000858700 001__ 858700
000858700 005__ 20230127125335.0
000858700 0247_ $$2doi$$a10.5194/gmd-2018-183
000858700 0247_ $$2ISSN$$a1991-9611
000858700 0247_ $$2ISSN$$a1991-962X
000858700 0247_ $$2ISSN$$a=
000858700 0247_ $$2ISSN$$aGeoscientific
000858700 0247_ $$2ISSN$$amodel
000858700 0247_ $$2ISSN$$adevelopment
000858700 0247_ $$2ISSN$$adiscussions
000858700 0247_ $$2Handle$$a2128/20986
000858700 0247_ $$2altmetric$$aaltmetric:47686807
000858700 037__ $$aFZJ-2018-07545
000858700 082__ $$a910
000858700 1001_ $$00000-0001-5812-3183$$aChang, Kai-Lan$$b0$$eCorresponding author
000858700 245__ $$aA new method (M$^3$Fusion-v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
000858700 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000858700 3367_ $$2DRIVER$$aarticle
000858700 3367_ $$2DataCite$$aOutput Types/Journal article
000858700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545209961_15563
000858700 3367_ $$2BibTeX$$aARTICLE
000858700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858700 3367_ $$00$$2EndNote$$aJournal Article
000858700 520__ $$aWe have developed a new statistical approach (M3Fusion) for combining surface ozone observations from thousands of monitoring sites around the world with the output from multiple atmospheric chemistry models to produce a global surface ozone distribution with greater accuracy than can be provided by any individual model. The ozone observations from 4766 monitoring sites were provided by the Tropospheric Ozone Assessment Report (TOAR) surface ozone database which contains the world's largest collection of surface ozone metrics. Output from six models was provided by the participants of the Chemistry-Climate Model Initiative (CCMI) and NASA's Global Modeling and Assimilation Office (GMAO). We analyze the 6-month maximum of the maximum daily 8-hour average ozone value (DMA8) for relevance to ozone health impacts. We interpolate the irregularly-spaced observations onto a fine resolution grid by using integrated nested Laplace approximations, and compare the ozone field to each model in each world region. This method allows us to produce a global surface ozone field based on TOAR observations, which we then use to select the combination of global models with the greatest skill in each of 8 world regions; models with greater skill in a particular region are given higher weight. This blended model product is bias-corrected within two degrees of observation locations to produce the final fused surface ozone product. We show that our fused product has an improved mean squared error compared to the simple multi-model ensemble mean.
000858700 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000858700 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000858700 588__ $$aDataset connected to CrossRef
000858700 7001_ $$0P:(DE-HGF)0$$aCooper, Owen R.$$b1
000858700 7001_ $$00000-0001-5652-4987$$aWest, J. Jason$$b2
000858700 7001_ $$0P:(DE-HGF)0$$aSerre, Marc L.$$b3
000858700 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b4
000858700 7001_ $$00000-0003-3852-3491$$aLin, Meiyun$$b5
000858700 7001_ $$0P:(DE-HGF)0$$aMarécal, Virginie$$b6
000858700 7001_ $$0P:(DE-HGF)0$$aJosse, Béatrice$$b7
000858700 7001_ $$0P:(DE-HGF)0$$aDeushi, Makoto$$b8
000858700 7001_ $$00000-0002-5013-4168$$aSudo, Kengo$$b9
000858700 7001_ $$0P:(DE-HGF)0$$aLiu, Junhua$$b10
000858700 7001_ $$0P:(DE-HGF)0$$aKeller, Christoph A.$$b11
000858700 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmd-2018-183$$gp. 1 - 34$$p1 - 34$$tGeoscientific model development discussions$$v183$$x1991-962X$$y2018
000858700 8564_ $$uhttps://juser.fz-juelich.de/record/858700/files/gmd-2018-183.pdf$$yOpenAccess
000858700 8564_ $$uhttps://juser.fz-juelich.de/record/858700/files/gmd-2018-183.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858700 909CO $$ooai:juser.fz-juelich.de:858700$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b4$$kFZJ
000858700 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000858700 9141_ $$y2018
000858700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858700 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858700 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858700 920__ $$lyes
000858700 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858700 980__ $$ajournal
000858700 980__ $$aVDB
000858700 980__ $$aUNRESTRICTED
000858700 980__ $$aI:(DE-Juel1)JSC-20090406
000858700 9801_ $$aFullTexts