000858701 001__ 858701
000858701 005__ 20210130000049.0
000858701 0247_ $$2doi$$a10.1088/1361-6463/aae8c5
000858701 0247_ $$2ISSN$$a0022-3727
000858701 0247_ $$2ISSN$$a0262-8171
000858701 0247_ $$2ISSN$$a0508-3443
000858701 0247_ $$2ISSN$$a1361-6463
000858701 0247_ $$2ISSN$$a2057-7656
000858701 0247_ $$2WOS$$aWOS:000453285100001
000858701 0247_ $$2altmetric$$aaltmetric:53052307
000858701 037__ $$aFZJ-2018-07546
000858701 082__ $$a530
000858701 1001_ $$0P:(DE-HGF)0$$aPopescu, Voicu$$b0
000858701 245__ $$aSpin caloric transport from density-functional theory
000858701 260__ $$aBristol$$bIOP Publ.$$c2019
000858701 3367_ $$2DRIVER$$aarticle
000858701 3367_ $$2DataCite$$aOutput Types/Journal article
000858701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552635277_21967
000858701 3367_ $$2BibTeX$$aARTICLE
000858701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858701 3367_ $$00$$2EndNote$$aJournal Article
000858701 520__ $$aSpin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes the three most frequently employed approaches to the problem, namely the Kubo, Boltzmann, and Landauer–Büttiker methods. These are showcased in specific examples that span, on the one hand, a wide range of materials, such as bulk metallic alloys, nano-structured metallic and tunnel junctions, or magnetic overlayers on heavy metals, and, on the other hand, a wide range of effects, such as the spin-Seebeck, magneto-Seebeck, and spin-Nernst effects, spin disorder, and the thermal spin-transfer and thermal spin–orbit torques.
000858701 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000858701 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000858701 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x2
000858701 536__ $$0G:(DE-Juel1)jara0051_20130501$$aElectronic and transport properties of magnetic systems at high temperature: ab-initio calculations (jara0051_20130501)$$cjara0051_20130501$$fElectronic and transport properties of magnetic systems at high temperature: ab-initio calculations$$x3
000858701 588__ $$aDataset connected to CrossRef
000858701 7001_ $$00000-0001-5947-1366$$aKratzer, Peter$$b1
000858701 7001_ $$0P:(DE-HGF)0$$aEntel, Peter$$b2
000858701 7001_ $$0P:(DE-HGF)0$$aHeiliger, Christian$$b3
000858701 7001_ $$0P:(DE-HGF)0$$aCzerner, Michael$$b4
000858701 7001_ $$0P:(DE-HGF)0$$aTauber, Katarina$$b5
000858701 7001_ $$0P:(DE-HGF)0$$aTöpler, Franziska$$b6
000858701 7001_ $$0P:(DE-HGF)0$$aHerschbach, Christian$$b7
000858701 7001_ $$0P:(DE-HGF)0$$aFedorov, Dmitry V$$b8
000858701 7001_ $$0P:(DE-HGF)0$$aGradhand, Martin$$b9
000858701 7001_ $$0P:(DE-HGF)0$$aMertig, Ingrid$$b10
000858701 7001_ $$0P:(DE-Juel1)145994$$aKováčik, Roman$$b11
000858701 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b12$$eCorresponding author$$ufzj
000858701 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b13$$ufzj
000858701 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b14
000858701 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b15
000858701 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b16$$ufzj
000858701 7001_ $$0P:(DE-HGF)0$$aWimmer, Sebastian$$b17
000858701 7001_ $$0P:(DE-HGF)0$$aKödderitzsch, Diemo$$b18
000858701 7001_ $$0P:(DE-HGF)0$$aSeemann, Marten$$b19
000858701 7001_ $$0P:(DE-HGF)0$$aChadova, Kristina$$b20
000858701 7001_ $$0P:(DE-HGF)0$$aEbert, Hubert$$b21
000858701 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/1361-6463/aae8c5$$gVol. 52, no. 7, p. 073001 -$$n7$$p073001$$tJournal of physics / D Applied physics D$$v52$$x1361-6463$$y2019
000858701 8564_ $$uhttps://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf$$yRestricted
000858701 8564_ $$uhttps://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858701 909CO $$ooai:juser.fz-juelich.de:858701$$pVDB
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145994$$aForschungszentrum Jülich$$b11$$kFZJ
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich$$b12$$kFZJ
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b13$$kFZJ
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b14$$kFZJ
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b15$$kFZJ
000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b16$$kFZJ
000858701 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000858701 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000858701 9141_ $$y2019
000858701 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858701 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000858701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2017
000858701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858701 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858701 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858701 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858701 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858701 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000858701 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000858701 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000858701 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000858701 980__ $$ajournal
000858701 980__ $$aVDB
000858701 980__ $$aI:(DE-Juel1)IAS-1-20090406
000858701 980__ $$aI:(DE-Juel1)PGI-1-20110106
000858701 980__ $$aI:(DE-82)080009_20140620
000858701 980__ $$aI:(DE-82)080012_20140620
000858701 980__ $$aUNRESTRICTED