000858701 001__ 858701 000858701 005__ 20210130000049.0 000858701 0247_ $$2doi$$a10.1088/1361-6463/aae8c5 000858701 0247_ $$2ISSN$$a0022-3727 000858701 0247_ $$2ISSN$$a0262-8171 000858701 0247_ $$2ISSN$$a0508-3443 000858701 0247_ $$2ISSN$$a1361-6463 000858701 0247_ $$2ISSN$$a2057-7656 000858701 0247_ $$2WOS$$aWOS:000453285100001 000858701 0247_ $$2altmetric$$aaltmetric:53052307 000858701 037__ $$aFZJ-2018-07546 000858701 082__ $$a530 000858701 1001_ $$0P:(DE-HGF)0$$aPopescu, Voicu$$b0 000858701 245__ $$aSpin caloric transport from density-functional theory 000858701 260__ $$aBristol$$bIOP Publ.$$c2019 000858701 3367_ $$2DRIVER$$aarticle 000858701 3367_ $$2DataCite$$aOutput Types/Journal article 000858701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552635277_21967 000858701 3367_ $$2BibTeX$$aARTICLE 000858701 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000858701 3367_ $$00$$2EndNote$$aJournal Article 000858701 520__ $$aSpin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes the three most frequently employed approaches to the problem, namely the Kubo, Boltzmann, and Landauer–Büttiker methods. These are showcased in specific examples that span, on the one hand, a wide range of materials, such as bulk metallic alloys, nano-structured metallic and tunnel junctions, or magnetic overlayers on heavy metals, and, on the other hand, a wide range of effects, such as the spin-Seebeck, magneto-Seebeck, and spin-Nernst effects, spin disorder, and the thermal spin-transfer and thermal spin–orbit torques. 000858701 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000858701 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000858701 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x2 000858701 536__ $$0G:(DE-Juel1)jara0051_20130501$$aElectronic and transport properties of magnetic systems at high temperature: ab-initio calculations (jara0051_20130501)$$cjara0051_20130501$$fElectronic and transport properties of magnetic systems at high temperature: ab-initio calculations$$x3 000858701 588__ $$aDataset connected to CrossRef 000858701 7001_ $$00000-0001-5947-1366$$aKratzer, Peter$$b1 000858701 7001_ $$0P:(DE-HGF)0$$aEntel, Peter$$b2 000858701 7001_ $$0P:(DE-HGF)0$$aHeiliger, Christian$$b3 000858701 7001_ $$0P:(DE-HGF)0$$aCzerner, Michael$$b4 000858701 7001_ $$0P:(DE-HGF)0$$aTauber, Katarina$$b5 000858701 7001_ $$0P:(DE-HGF)0$$aTöpler, Franziska$$b6 000858701 7001_ $$0P:(DE-HGF)0$$aHerschbach, Christian$$b7 000858701 7001_ $$0P:(DE-HGF)0$$aFedorov, Dmitry V$$b8 000858701 7001_ $$0P:(DE-HGF)0$$aGradhand, Martin$$b9 000858701 7001_ $$0P:(DE-HGF)0$$aMertig, Ingrid$$b10 000858701 7001_ $$0P:(DE-Juel1)145994$$aKováčik, Roman$$b11 000858701 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b12$$eCorresponding author$$ufzj 000858701 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b13$$ufzj 000858701 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b14 000858701 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b15 000858701 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b16$$ufzj 000858701 7001_ $$0P:(DE-HGF)0$$aWimmer, Sebastian$$b17 000858701 7001_ $$0P:(DE-HGF)0$$aKödderitzsch, Diemo$$b18 000858701 7001_ $$0P:(DE-HGF)0$$aSeemann, Marten$$b19 000858701 7001_ $$0P:(DE-HGF)0$$aChadova, Kristina$$b20 000858701 7001_ $$0P:(DE-HGF)0$$aEbert, Hubert$$b21 000858701 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/1361-6463/aae8c5$$gVol. 52, no. 7, p. 073001 -$$n7$$p073001$$tJournal of physics / D Applied physics D$$v52$$x1361-6463$$y2019 000858701 8564_ $$uhttps://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf$$yRestricted 000858701 8564_ $$uhttps://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf?subformat=pdfa$$xpdfa$$yRestricted 000858701 909CO $$ooai:juser.fz-juelich.de:858701$$pVDB 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145994$$aForschungszentrum Jülich$$b11$$kFZJ 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich$$b12$$kFZJ 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b13$$kFZJ 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b14$$kFZJ 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b15$$kFZJ 000858701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b16$$kFZJ 000858701 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000858701 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000858701 9141_ $$y2019 000858701 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000858701 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000858701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000858701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2017 000858701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000858701 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000858701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000858701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000858701 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000858701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000858701 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000858701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000858701 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000858701 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000858701 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000858701 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000858701 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000858701 980__ $$ajournal 000858701 980__ $$aVDB 000858701 980__ $$aI:(DE-Juel1)IAS-1-20090406 000858701 980__ $$aI:(DE-Juel1)PGI-1-20110106 000858701 980__ $$aI:(DE-82)080009_20140620 000858701 980__ $$aI:(DE-82)080012_20140620 000858701 980__ $$aUNRESTRICTED