001     858701
005     20210130000049.0
024 7 _ |a 10.1088/1361-6463/aae8c5
|2 doi
024 7 _ |a 0022-3727
|2 ISSN
024 7 _ |a 0262-8171
|2 ISSN
024 7 _ |a 0508-3443
|2 ISSN
024 7 _ |a 1361-6463
|2 ISSN
024 7 _ |a 2057-7656
|2 ISSN
024 7 _ |a WOS:000453285100001
|2 WOS
024 7 _ |a altmetric:53052307
|2 altmetric
037 _ _ |a FZJ-2018-07546
082 _ _ |a 530
100 1 _ |a Popescu, Voicu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Spin caloric transport from density-functional theory
260 _ _ |a Bristol
|c 2019
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552635277_21967
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes the three most frequently employed approaches to the problem, namely the Kubo, Boltzmann, and Landauer–Büttiker methods. These are showcased in specific examples that span, on the one hand, a wide range of materials, such as bulk metallic alloys, nano-structured metallic and tunnel junctions, or magnetic overlayers on heavy metals, and, on the other hand, a wide range of effects, such as the spin-Seebeck, magneto-Seebeck, and spin-Nernst effects, spin disorder, and the thermal spin-transfer and thermal spin–orbit torques.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20090701)
|0 G:(DE-Juel1)jiff40_20090701
|c jiff40_20090701
|f Topological transport in real materials from ab initio
|x 2
536 _ _ |a Electronic and transport properties of magnetic systems at high temperature: ab-initio calculations (jara0051_20130501)
|0 G:(DE-Juel1)jara0051_20130501
|c jara0051_20130501
|f Electronic and transport properties of magnetic systems at high temperature: ab-initio calculations
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kratzer, Peter
|0 0000-0001-5947-1366
|b 1
700 1 _ |a Entel, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Heiliger, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Czerner, Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tauber, Katarina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Töpler, Franziska
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Herschbach, Christian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fedorov, Dmitry V
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gradhand, Martin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mertig, Ingrid
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kováčik, Roman
|0 P:(DE-Juel1)145994
|b 11
700 1 _ |a Mavropoulos, Phivos
|0 P:(DE-Juel1)130823
|b 12
|e Corresponding author
|u fzj
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 13
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 14
700 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 15
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 16
|u fzj
700 1 _ |a Wimmer, Sebastian
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ködderitzsch, Diemo
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Seemann, Marten
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Chadova, Kristina
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Ebert, Hubert
|0 P:(DE-HGF)0
|b 21
773 _ _ |a 10.1088/1361-6463/aae8c5
|g Vol. 52, no. 7, p. 073001 -
|0 PERI:(DE-600)1472948-9
|n 7
|p 073001
|t Journal of physics / D Applied physics D
|v 52
|y 2019
|x 1361-6463
856 4 _ |u https://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858701/files/Popescu_2019_J._Phys._D__Appl._Phys._52_073001.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:858701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)145994
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130823
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS D APPL PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21