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We extensively test a recent protocol to demonstrate quantum fault tolerance on three systems: (1) a real-time

simulation of five spin qubits coupled to an environment with two-level defects, (2) a real-time simulation of

transmon quantum computers, and (3) the 16-qubit processor of the IBM Q Experience. In the simulations,

the dynamics of the full system is obtained by numerically solving the time-dependent Schrödinger equation.

We find that the fault-tolerant scheme provides a systematic way to improve the results when the errors are

dominated by the inherent control and measurement errors present in transmon systems. However, the scheme

fails to satisfy the criterion for fault tolerance when decoherence effects are dominant.
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I. INTRODUCTION

A functional universal gate-based quantum computer re-

quires a very high level of precision in implementing the

quantum gates. In particular when the devices become bigger,

it proves difficult to maintain this high level of qubit control

[1–5] or to satisfy the requirements needed for a computing

device [6]. To overcome these limitations, the most prominent

solution is provided by the theory of fault-tolerant quantum

computation [7–9].

However, despite many experiments on quantum codes

[10–14], it has still remained an open question how much

a practical application can profit from a full fault-tolerant

protocol. Therefore, Gottesman proposed a test [15] that uses

four physical qubits to encode two logical qubits, in combi-

nation with a criterion for a successful demonstration of fault

tolerance, requiring the following: All encoded circuits of some

representative set perform better than the corresponding bare,

unencoded circuits.

The underlying error-detecting four-qubit code [16–18] has

been implemented with ion-trap qubits [19] and on IBM’s

five-qubit processor [20–22]. Each of these experiments re-

ports a successful result, but none explicitly tests the proposed

fault-tolerance criterion.

In this paper, we report on an extensive test of the fault-

tolerance criterion for three complementary systems. System

(1) consists of five spin qubits coupled to an environment at

a given temperature. We consider various weak- and strong-

coupling strengths and various temperatures. This system

serves as a general model to study decoherence [23–25].

System (2) is an upscaled version of the real-time circuit-

Hamiltonian simulation used in [5] comprising five transmons

and six resonators. System (3) is the physical 16-qubit device

ibmqx5 provided by IBM [4]. We find very good agreement

between the latter two systems for the proper set of optimized

gate pulses including measurement errors.

The real-time dynamics of both system (1) and (2) are stud-

ied by numerically solving the time-dependent Schrödinger

equation (TDSE) with h̄ = 1,

i
∂

∂t
|�(t )〉 = H (t )|�(t )〉, (1)

where H (t ) is the time-dependent model Hamiltonian and

|�(t )〉 represents the state of the device at time t . Note that the

computer simulation is a deterministic program that always

produces the same mathematical solution |�(t )〉, from which

we can compute any physically relevant quantity (such as re-

duced density matrices of smaller subsystems with nonunitary

dynamics) without the need of sampling events. A simulation

at this level goes, by definition, beyond perturbative studies,

master equations, and assumed Markovianity or completely

positive trace-preserving maps [26–28].

We find that despite the goal of quantum error correc-

tion, the fault-tolerant scheme fails to satisfy the success

criterion under the influence of decoherence errors in system

(1). However, our study suggests that fault-tolerant schemes

can systematically improve the performance with respect to

the natural control and measurement errors dominating the

transmon systems (2) and (3).

This paper is structured as follows. In Sec. II, we give a

brief overview of the theory of quantum fault tolerance and

the protocol that we study. Section III contains the results for

system (1). In this system, there are no control errors, allowing

us to assess the performance of the fault-tolerant protocol

in the presence of decoherence errors only. In Sec. IV, we

present the transmon simulation model, i.e., system (2). This

system allows us to study the protocol’s performance under

inherent control and measurement errors. Subsequently, in

Sec. V, we present experimental results for system (3). This

section also contains a comparison with systems (1) and

(2), showing that IBM’s transmon qubits are not dominantly

affected by decoherence errors and can thus benefit from the

fault-tolerant protocol. Finally, conclusions from our study of

all three systems are given in Sec. VI.
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II. FAULT TOLERANCE

In the framework of quantum fault tolerance, logical qubits

are encoded in multiple physical qubits to allow for the

detection and correction of errors. This concept inevitably

relies on a mathematical model for the errors that are supposed

to happen in a physical quantum processor. Simple versions

of these models are based on discrete, uncorrelated single-

qubit errors or the possibility to describe the errors within the

quantum operations formalism [29], while more sophisticated

studies consider non-Markovian errors in a general Hamil-

tonian framework [30–34]. The results of these studies are

so-called threshold theorems, stating that as long as a certain

parameter in the model is below a certain threshold, arbitrarily

long quantum computation is possible.

However, as these threshold theorems are only valid within

the mathematical model for the errors, it is unclear whether

a particular quantum error-correcting scheme is beneficial in

an actual application. For instance, the thresholds are usually

expressed in terms of the diamond norm [35], which is exper-

imentally inaccessible. Although progress has been made to

relate this quantity to the average gate fidelity [36,37], recent

studies have demonstrated that this fidelity, too, cannot be

measured in a physical quantum information processor [38].

In fact, it was shown in two independent studies that none

of these error metrics can reliably predict the performance of

quantum gates in a practical application [5,28].

The fault-tolerant scheme that we test in this study was

explicitly designed to apply to small quantum computers [15].

It replaces a bare two-qubit circuit with an encoded four-qubit

circuit and an additional ancilla qubit. In this paper, the term

circuit is defined to include both an initial-state preparation

and a sequence of gates. In particular, we consider the initial

states |00〉, |0+〉 = |00〉 + |01〉, and |�+〉 = |00〉 + |11〉 (up

to normalization). In the encoded circuits, these states are

represented by entangled four-qubit states (see Appendix A

for their definitions and preparation circuits). Along with the

encoding of states, there is a set of encoded gates to build

a quantum circuit. In the present case, this set is given by

{X1, X2, Z1, Z2, HHS, CZ}, where X1 and X2 denote bit-

flip gates, Z1 and Z2 denote sign-flip gates, HHS denotes

the Hadamard gate on each qubit followed by swapping the

qubits, and CZ denotes the controlled-phase gate [29]. A

full specification of how all bare and encoded circuits are

implemented in the fault-tolerant scheme is given in Table III

and Table IV in Appendix A.

The aim is to compare the performance of a bare circuit

with that of an encoded circuit for a representative set of

circuits. To find such a set, we applied the procedure suggested

in [15] for the maximum circuit length T = 10, the repetition

parameter RP = 6, and the periodicity P = 3, yielding 465

circuits. In this paper, we focus on the results for a selection

of 15 circuits (see Table I) that we consider representative of

the performance of all 465 tested circuits (cf. Appendix B).

Evaluating the performance of the circuits is done as

follows. For the bare versions, a final measurement of the

qubits produces a distribution pbare
q3q4

of two-bit strings q3q4.

For the encoded versions, the same measurement produces

a distribution of five-bit strings q0q1q2q3q4. The encoding

scheme then dictates that if the ancilla qubit q0 is 1 or if the

TABLE I. List of the selected 15 circuits to illustrate the dif-

ference between bare and encoded versions (see Appendix B for

a list of all 465 tested circuits). The first column contains sets of

three circuit ID’s labeling the circuits in the second column, which

consist of particular sets of gates operating on three initial states

|i〉 ∈ (|00〉, |0+〉, |�+〉), enumerated in this order.

ID Circuit

0–2 |i〉
240–242 X1 X1 X1 X1 X1 |i〉
216–218 CZ CZ CZ CZ CZ |i〉
171–173 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 |i〉
270–272 HHS CZ HHS CZ HHS CZ HHS CZ HHS CZ |i〉

bit string q1q2q3q4 includes an odd number of 1’s (meaning

that it does not correspond to an encoded basis state [15]), it

is discarded. The ratio of bit strings that are not discarded is

called the postselection (PS) ratio r . These selected bit strings

then constitute a new distribution penc
q3q4

, normalized by the PS

ratio r . Both bare and encoded distributions can be compared

to the theoretical distribution p
theory
q3q4

that an ideal gate-based

quantum computer produces. The appropriate measure to

compare these distributions is the statistical distance [36],

Dbare =
1

2

∑

q3q4

∣

∣pbare
q3q4

− ptheory
q3q4

∣

∣, (2)

Denc =
1

2

∑

q3q4

∣

∣penc
q3q4

− ptheory
q3q4

∣

∣. (3)

In terms of these quantities, Gottesman’s success criterion for

fault tolerance is fulfilled if Denc < Dbare for all circuits under

investigation.

Mathematical motivations suggesting a better performance

of the encoded circuits are (1) the added redundancy in com-

bination with postselection and (2) the fact that an encoded

circuit needs two-qubit gates exclusively for the initial-state

preparation. However, only practical tests such as the one per-

formed in this paper can tell whether fault-tolerant schemes

can improve the performance.

III. SPIN QUBITS COUPLED TO AN ENVIRONMENT

System (1) consists of 5 + NE two-level systems. The

subsystem with the first five two-level systems represents the

spin qubits of the quantum computer, and the remaining NE

two-level systems constitute the environment. This model is

motivated by the experimental observation that in recent su-

perconducting quantum processors, two-level systems formed

by material defects constitute a major source of decoherence

caused by the environment [25,39,40].

We consider the system depicted in Fig. 1. The five qubits

have an all-to-all coupling. Each qubit is connected to one

two-level system in the environment, which is represented by

spins organized on a ring. The Hamiltonian describing the

whole system reads

H = HQ + HE + λHQE, (4)
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FIG. 1. Schematic representation of the system of five spin qubits

(blue) coupled to an environment (red), described by the model

Hamiltonian given in Eqs. (4)–(7). The five qubits representing the

quantum computer have a tunable all-to-all connectivity (dashed

lines). The two-level systems in the environment form a ring with

an always-on coupling between nearest neighbors and to the qubits

of the quantum computer (solid lines). The latter is controlled by the

coupling strength λ.

where the Hamiltonians HQ, HE , and HQE describe the quan-

tum computer, the environment, and the interaction between

both, respectively. The parameter λ controls the coupling

strength between the quantum computer and the environment.

The Hamiltonians HQ, HE , and HQE given in Eq. (4) read

HQ = −
4

∑

n=0

∑

α=x,z

hα
nσ α

n −
4

∑

n,m=0

Gx
nmσ x

n σ x
m, (5)

HE = −
NE+4
∑

n=5

∑

α=x,y,z

J α
n σ α

n σ α
n+1, (6)

HQE = −
4

∑

n=0

∑

α=x,y,z

Kα
njn

σ α
n σ α

jn
, (7)

where σ α
n for α = x, y, z denote the Pauli matrices for qubit

n. Each qubit n ∈ {0, . . . , 4} is connected to a randomly

chosen qubit jn ∈ {5, . . . , NE + 4} in the environment (all jn

are different) with a random coupling strength λ|Kα
njn

| ≈ λ ×
2 GHz, tunable through the parameter λ. In the environment

Hamiltonian HE , the couplings J α
n are chosen randomly from

[−J, J ] for J = 2 GHz.

Implementing the quantum gates through piecewise con-

stant parameters in Eq. (5) eliminates any control and mea-

surement errors. Therefore, with this implementation, we can

exclusively study the effect of decoherence errors because the

only source of errors is the interaction between the qubits

and the environment. The comparison with the results of

systems (2) and (3) then allows us to understand the differ-

ence between decoherence errors and control or measurement

errors when using a fault-tolerant protocol. In Appendix C 1,

we give the full specification of the parameters hα
n and Gx

nm

that enter in HQ [see Eq. (5)]. In the absence of coupling

to the environment, the whole system evolves in time like

an ideal quantum computer. Running all quantum circuits on

both system (1) for λ = 0 and the Jülich universal quantum

0

0.2

0.4

0.6

0

0.5

1(a)

0

0.2

0.4

0.6

0

0.5

1(b)

0

0.2

0.4

0.6

0 1 2

2
4
0

2
4
1

2
4
2

2
1
6

2
1
7

2
1
8

1
7
1

1
7
2

1
7
3

2
7
0

2
7
1

2
7
2

0

0.5

1(c)

D
b
a
re

,
en

c

P
S

ra
ti

o
r

D
b
a
re

,
en

c

P
S

ra
ti

o
r

D
b
a
re

,
en

c

P
S

ra
ti

o
r

Circuit ID

FIG. 2. Test of the fault-tolerance criterion in system (1) for

different coupling strengths (a) λ = 0.01, (b) λ = 0.1, (c) λ = 0.2

between the qubits and the environment. Shown are the statistical

distances to the ideal result for the selected bare (dashed red line)

and encoded (solid green line) circuits as defined in Eqs. (2) and

(3), and the postselection ratios (blue dots). All plotted quantities are

dimensionless. The simulations were done for inverse temperature

β = 1 and environment NE = 20. Lines connecting the data points

are guides to the eye.

computer simulator [41] yields identical results, validating the

correct implementation of the quantum gates.

We solve the TDSE given in Eq. (1) with the piece-

wise time-independent Hamiltonian given in Eqs. (4)–(7) to

machine precision by means of the Chebyshev polynomial

representation of exp(−itH ) [42–44]. The environment is

prepared at an inverse temperature β using the random-state

technology [44,45].

To understand how λ affects the qubit coherence, we esti-

mate the decoherence time T2 by preparing the qubit along the

positive x axis, evolving it in the presence of the environment,

and fitting a damped oscillation to the decay of its projec-

tion on the x axis; see [46] for more details on this proce-

dure. These experiments are performed at inverse temperature

β = 0 to produce the worst-case decoherence times. We

find that T λ
2 ≈ 3.7 ns/λ2 (data not shown) and, specifically,

T λ=0.1
2 ≈ 370 ns and T λ=0.01

2 ≈ 4×104 ns. In particular, the

decoherence time T λ=0.01
2 is much larger than the time needed

to execute a quantum circuit in this model (cf. Table VI in

Appendix C 1), which supports the interpretation of λ = 0.01

representing a very weak coupling between the ideal quantum

computer and the environment.

In Fig. 2, we present results for the statistical distances

Dbare and Denc [see Eqs. (2) and (3)] and the PS ratio r

for the circuits listed in Table I. The three cases shown in

Figs. 2(a)–2(c) are representative of the transition from very

weak coupling λ = 0.01 to strong coupling λ = 0.2 between

the qubits and the environment. For the weakest coupling

[see Fig. 2(a)], the statistical distances for both bare and

encoded circuits are nearly zero, and the postselection ratios

r ≈ 1. This shows that in this case, both bare and encoded

versions perform almost perfectly [i.e., both produce the

ideal result used in Eqs. (2) and (3)]. This observation also
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TABLE II. Percentage P of the circuits from Table I for which

the encoded version performs better than the bare version, as a

function of the coupling strength λ between the qubits and the

environment. The coupling strengths range from very weak to strong

coupling. The simulations were done for inverse temperature β = 1

and environment size NE = 20.

λ 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

P 80% 87% 73% 73% 67% 67% 53% 53% 53%

demonstrates the correct implementation of the quantum com-

puter by means of the model defined by Eqs. (4)–(7).

Increasing the coupling strength λ leads to a stronger

influence of decoherence errors on the operation of the quan-

tum computer. Accordingly, in Figs. 2(b) and 2(c), it can be

seen that the statistical distances of both bare and encoded

circuits increase. Interestingly, one can always find circuits

for which the bare version outperforms the encoded version.

In particular, every third circuit starting from circuit ID 0

shows a strong increase in Denc. These circuits correspond

to the encoding of the state |00〉. The physical reason behind

the sensitivity of these circuits is that the encoding circuit

for |00〉 includes the largest number of two-qubit gates (see

Table III in Appendix A). These two-qubit gates typically take

a longer time to execute than single-qubit gates [12,19,47]

(see also Table VI in Appendix C 1). Hence, the entangling

two-qubit gate is the most sensitive gate even when no control

errors, but only decoherence errors, are present. The only

exception is the circuit with ID 270, which always yields

Dbare ≈ Denc ≈ 0 (see Fig. 2). The reason is that the execution

time of this circuit is so long that the interaction with the

environment leads to a uniform distribution of all five-qubit

states in the quantum computer, which accidentally matches

the ideal output distribution (cf. Table I).

A summary of the performance for various intermediate

coupling strengths λ ∈ [0.01, 0.2] is given in Table II. In-

terestingly, the percentage P of encoded circuits performing

better than the bare circuits is not a monotonous function of

λ. For instance, the largest value of P is found at λ = 0.025

instead of λ = 0.01. However, for such a weak coupling,

both bare and encoded circuits perform nearly perfectly [cf.

Fig. 2(a)].

In addition to the results shown in Fig. 2 and Table II, we

have studied the performance of the circuits for different envi-

ronment sizes NE ∈ {5, 20, 27} (see Fig. 9 in Appendix C 1)

and inverse temperatures β ∈ {0, 1, 5} (see Fig. 10 in Ap-

pendix C 1), each of which yields results with the characteris-

tic features resembling those in Fig. 2(b). This means that in

all analyzed regimes, there are always some encoded circuits

that perform worse than their bare equivalents. In other words,

we did not find any case that passes the fault-tolerance test.

One may ask whether this result violates the threshold

theorems proven in [30–33], which obviously consider a

Hamiltonian similar to Eqs. (4)–(7). The answer is that in

the threshold theorems, the required value of λ is still orders-

of-magnitude smaller than the ones we studied. Yet, already

for λ = 0.01 [see Fig. 2(a)], both bare and encoded circuits

perform almost perfectly and encoding still makes the result

worse in some cases. We conclude that using a fault-tolerant

FIG. 3. Schematic image showing the five transmon qubits and

six resonators described by the Hamiltonian given in Eqs. (8)–(10).

The system represents a subset of the 16-qubit device ibmqx5 [4]

with an additional resonator r5 to enable the implementation of

all bare and encoded circuits. Without this resonator, the encoded

circuits with initial state |00〉 cannot be fault-tolerantly implemented

[15].

protocol such as the one suggested in [15] to overcome errors

in a system dominated by decoherence errors from two-level

defects is not necessarily helpful.

IV. TRANSMON SIMULATION

System (2) is defined by the circuit Hamiltonian for

Ntr = 5 superconducting transmon qubits coupled by Nres = 6

transmission-line resonators [48,49], a system that can be used

to model IBM’s publicly accessible quantum processors [4,5].

The simulated system is schematically shown in Fig. 3 as a

subset of the 16-qubit device ibmqx5 [4].

The full Hamiltonian used in the transmon simulation reads

H = Htr + Hres, (8)

Htr =
∑

i

{4ECi[n̂i − ngi (t )]2 − EJ i cos ϕ̂i}, (9)

Hres =
∑

r

�r â
†
r âr +

∑

r,i

Gri n̂i (âr + â†
r ), (10)

where i = 0, . . . , Ntr − 1 enumerates the transmon qubits

with capacitive energies ECi , Josephson energies EJ i , number

operators n̂i , and superconducting phase operators ϕ̂i . The res-

onators are labeled by r = 0, . . . , Nres − 1 and are described

by their raising and lowering operators â
†
r and âr , respectively.

Their frequencies are given by �r and the capacitive cou-

pling strength between transmon i and resonator r is denoted

by Gri . Quantum gates on the transmons are implemented

through microwave voltage pulses represented by ngi (t ) [5].

A specification of all device parameters and pulse shapes is

given in Appendix C 2.

We simulate the transmon computer model defined in

Eqs. (8)–(10) by solving the TDSE given in Eq. (1) with

the time-dependent Hamiltonian in Eq. (8) using a second-

order Suzuki-Trotter product-formula algorithm [5,50,51]

with time step τ = 0.001 ns. The simulation includes as

many higher levels in the transmons and the resonators as

necessary to describe the dynamics of the system accu-

rately (see Appendix C 2 for more information). The de-

vice parameters in Eqs. (8)–(10) and optimized gate pulses

ngi (t ) are chosen such that they represent a subset of

five transmons and five resonators from the 16-qubit de-

vice ibmqx5 [4,47,52]. Additionally, a sixth resonator r5

is included in the model (see Fig. 3) to extend the con-

nectivity such that all circuits of the fault-tolerant scheme
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FIG. 4. Test of the fault-tolerance criterion in system (2), i.e., the

real-time transmon simulation for different optimized gate sets (a)

without frequency tuning, (b) with frequency tuning, and (c) with fre-

quency tuning and measurement error p = 0.08. Shown are the sta-

tistical distances to the ideal result for the selected bare (dashed red

line) and encoded (solid green line) circuits as defined in Eqs. (2) and

(3), and the postselection ratios (blue dots). All plotted quantities are

dimensionless. Lines connecting the data points are guides to the eye.

can be implemented. The additional resonator solves the

problem faced in [20], where the original fault-tolerant en-

coding could not be implemented and an alternative encoding

was used which, although fault-tolerant in theory, did not pass

the fault-tolerance test on the IBM device.

The results of the fault-tolerance test are shown in Fig. 4 for

two different gate sets. Both gate sets use Gaussian microwave

pulses driven at a certain drive frequency f to implement

the quantum gates [see Eq. (C1), Table IX, and Table X in

Appendix C 2 for the individual parameters resulting from the

pulse optimization]. For the first gate set, this drive frequency

was set to the respective qubit frequency for each qubit. As

can be seen in Fig. 4(a), the performance is equally good for

both bare and encoded circuits. The fault-tolerance criterion

Denc < Dbare is not satisfied.

The second gate set has been obtained by additionally

optimizing the drive frequencies of the microwave pulses.

This means that the drive frequencies are slightly detuned

from the qubit frequencies such that the gate fidelities are

slightly better on average (compare [53] and Table XI in

Appendix C 2; note, however, that better fidelities do not

always imply better gates [5]). Unlike the first gate set, the

second gate set shows nearly perfect performance for all

the encoded circuits [see Fig. 4(b)], suggesting that a fault-

tolerant implementation can profit more from reduced control

errors than a bare implementation. In particular, by examining

the numerical results used for Fig. 4(b), we find that the

fault-tolerance criterion is satisfied for all circuits but the one

with ID 0 (corresponding to |00〉; see Table I). This is the

only circuit for which the bare version does not require any

pulses and, obviously, applying no pulse is bound to perform

better than applying the preparation pulses to encode |00〉.
Therefore, in the absence of additional measurement errors,

this exception is reasonable.
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FIG. 5. Test of the fault-tolerance criterion in system (3), i.e., the

16-qubit device ibmqx5 using the qubits (Q4, Q3,Q2, Q15, Q14) on

(a) April 3, 2018, (b) April 9, 2018, and (c) April 19, 2018. Shown

are the statistical distances to the ideal result for the selected bare

(dashed red line) and encoded (solid green line) circuits as defined in

Eqs. (2) and (3), and the postselection ratios (blue dots). All plotted

quantities are dimensionless. Only the circuits that could be mapped

on the topology were run on the real device. Lines connecting the

data points are guides to the eye.

To assess the effect expected due to measurement errors,

we model an additional error for each qubit such that with

probability p, a measured bit 0 is erroneously counted as 1,

and vice versa. As shown in Fig. 4(c) for the case p = 0.08,

the fault-tolerance test is passed for all circuits. Thus, in

addition to the natural unitary errors inherently included in

the real-time transmon simulation (cf. [5]), the presence of

measurement errors is essential to fulfill the fault-tolerance

criterion.

V. PHYSICAL TRANSMON DEVICE

System (3) is used to test the fault-tolerance criterion by

utilizing the 16-qubit device ibmqx5 provided by IBM [4].

Using the qubit mapping q0q1q2q3q4 �→ Q4Q3Q2Q15Q14,

this device provides the correct connectivity to run all circuits

except for the encoded version of the circuits with initial state

|00〉 [a problem which was solved in system (2) by including

the additional resonator r5; see Fig. 3].

The results for 15 out of the 465 tested circuits are shown

in Fig. 5 for three different calibrations. We observe that the

performance of the device varies for different calibrations. For

instance, the experiment on April 9, 2018 shown in Fig. 5(b)

failed the fault-tolerance test. However, in general, many runs

passed the test for all circuits (see also Fig. 6 in Appendix B

for the full set of circuits).

As system (2), discussed in Sec. IV, was designed to

simulate a transmon processor such as ibmqx5, it is of course

tempting to set the results in relation to the experimental

observations presented in Fig. 5. The first set of gate pulses

used for Fig. 4(a), where the drive frequencies were not

optimized but set to the qubit frequencies, shows a circuit

performance that differs from the results shown in Fig. 5. In

particular, the fault-tolerance test fails. However, the second

gate set used for Fig. 4(b) yields a positive result for all circuits
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that often passed the test on ibmqx5 [see Figs. 5(a) and 5(c)].

This suggests that the pulses used on IBM’s processor also

utilize slightly detuned drive frequencies.

Note that the individual circuit performance of system (3)

depends a lot on the pulse parameters found in the calibration

procedure. For instance, in Figs. 5(b) and 5(c), the encoded

circuits with initial state |�+〉 always perform slightly worse

than the encoded circuits with initial state |0+〉. We examined

the gate errors reported by IBM for the corresponding two-

qubit gates, finding that they reflect this observation on April 9

and April 19. The reason that we cannot observe this feature in

Fig. 4 for system (2) is that our pulse-optimization procedure

produces slightly more reliable pulse parameters whose two-

qubit error rates do not spread as much and also do not differ

between runs on separate days (cf. Table XI in Appendix C 2).

The best agreement between simulation and experiment

is achieved when an additional measurement error is taken

into account [see Fig. 4(c)]. In particular, the fault-tolerance

criterion is then also satisfied for every encoded circuit that

could not be run on ibmqx5 (corresponding to the circuit IDs

0, 240, 216, 171, and 270). This suggests that the positive

result for the fault-tolerance test may also be observed if the

device’s connectivity is extended to support the complete set

of circuits, as was done in the simulation (see Fig. 3).

A direct comparison to system (1), i.e., the system of spin

qubits coupled to an environment discussed in Sec. III, yields

another interesting conclusion. Clearly, the performance of the

tested circuits shown in Fig. 2 differs largely from the results

shown in Fig. 5 in that the fault-tolerance criterion for system

(1) was not satisfied for any of the studied set of parameters.

This led to the conclusion that decoherence errors are difficult

to mitigate with the fault-tolerant scheme. However, Figs. 5

and 6 (see Appendix B) show that the fault-tolerance criterion

can indeed be achieved in the IBM Q Experience. Thus we

conclude that the errors in IBM’s quantum processors are not

dominated by decoherence from material defects.

VI. DISCUSSION

We have tested a full fault-tolerant protocol encoding two

logical qubits on three complementary systems, each dom-

inated by a certain type of errors present in applications.

Since these errors can be much more complicated than those

assumed in the design of fault-tolerant protocols, it is by

no means guaranteed that using a fault-tolerant protocol im-

proves the computation.

System (1) is a set of five spin qubits coupled to an environ-

ment with various coupling strengths, sizes, and temperatures.

This system suffers only from decoherence errors that are

controlled by the coupling strength. We found that the fault-

tolerance criterion is not satisfied for any set of parameters,

suggesting that dominating decoherence errors are hard to

mitigate with a fault-tolerant scheme.

System (2) is a model system of five transmon qubits and

six resonators, in which the quantum gates are implemented

by the same Gaussian microwave pulses that are also used

in experiments [5,47,52,54]. Lacking an environment, this

system’s performance is purely affected by unitary control

errors. We found that for the appropriate set of gate pulses

with detuned drive frequencies, a full fault-tolerant protocol

can systematically improve a quantum computer’s perfor-

mance. In the presence of an additional measurement error,

we showed that the fault-tolerance criterion is satisfied for all

circuits under investigation.

System (3) is a physical implementation of a quantum com-

puter based on transmon qubits, namely, the device ibmqx5

of the IBM Q Experience [4]. While the results varied with

the day on which we carried out the experiments, the general

observation was that the fault-tolerance criterion is satisfied

for all circuits that could be mapped on the device topology.

Furthermore, by comparing the experimental results with the

simulation results for system (2), we found that this observa-

tion still holds if the device’s topology is extended to support

the complete set of circuits. A comparison with the results for

system (1) further suggests that the errors in IBM’s quantum

processor are largely control and measurement errors, imply-

ing that the device is well isolated from decoherence due to

material defects.

Based on these results, we conclude that the performance

of a quantum computer can be systematically improved with

a fault-tolerant protocol, as long as the errors of the under-

lying processor are due to control and measurement errors.

However, the use of a fault-tolerant scheme is not necessarily

helpful when decoherence errors are dominant.
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APPENDIX A: SPECIFICATION OF

THE FAULT-TOLERANT SCHEME

The error-detecting code used in the fault-tolerant scheme

is the [[4,2,2]] code, where the logical two-qubit states are

defined as

|00〉 = (|0000〉 + |1111〉)/
√

2, (A1)

|01〉 = (|1100〉 + |0011〉)/
√

2, (A2)

|10〉 = (|1010〉 + |0101〉)/
√

2, (A3)

|11〉 = (|0110〉 + |1001〉)/
√

2. (A4)

By linear combination, one can derive the encoded versions

of the other two initial states considered in this study,

|0+〉 = (|0000〉 + |1100〉 + |0011〉 + |1111〉)/2, (A5)

|�+〉 = (|0000〉 + |0110〉 + |1001〉 + |1111〉)/2. (A6)
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TABLE III. Initial states and the bare and encoded versions of

their preparation circuits.

The physical four-qubit states are enumerated in increasing

order as q1q2q3q4 and an additional qubit q0 is used as the

ancilla qubit. Using this labeling, the logical gates used in the

tested circuits map to the physical gates according to

X1 = X1X3, (A7)

X2 = X1X2, (A8)

Z1 = Z1Z2, (A9)

Z2 = Z1Z3, (A10)

HHS = H1H2H3H4, (A11)

CZ = S1S2S3S4Z2Z3, (A12)

which can be easily verified by applying the logical gates to

the definition of the logical states given in Eqs. (A1)–(A4).

In Table III and Table IV, we give a specification of all gate

sequences used to assemble the bare and encoded versions of

the circuits to test the fault-tolerance criterion.

APPENDIX B: FULL SET OF TESTED CIRCUITS

In Table V, we give a list of all 465 circuits generated by the

procedure suggested in [15] for the maximum circuit length

T = 10, the repetition parameter RP = 6, and the periodicity

P = 3.

TABLE IV. Bare and encoded gate elements.

A representative result of the performance of all circuits on

the IBM device is shown in Fig. 6 [note that the interruptions

in the solid green line are due to the fact that the encoded ver-

sion of |00〉 cannot be prepared using the topology of system

(3)]. This result undeniably demonstrates that encoding the

circuits according to the fault-tolerant scheme can improve the

overall performance of the circuits that can be implemented

on the device. However, as already mentioned in Sec. V, the

fault-tolerance criterion was not satisfied on all days that we

ran the experiment. One such result is shown in Fig. 7 where

some of the encoded circuits with initial state |�+〉 have rather

high statistical distances and low PS ratios.

For completeness, we also present results for the full set of

circuits tested in the decoherence model [system (1)] in Fig. 8.

This figure does not have the above-mentioned interruptions

since, in system (1), all 465 circuits can be implemented and

tested in both their bare and encoded version.
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FIG. 6. Test of the fault-tolerance criterion in system (3) (see Sec. V) for all 465 circuits using the qubits (Q4, Q3, Q2, Q15, Q14) of the

IBM 16-qubit device ibmqx5 on April 19, 2018. Shown are the statistical distances to the ideal result for the selected bare (red plusses) and

encoded (green crosses) circuits, and the postselection ratios (blue dots). All plotted quantities are dimensionless. Only the circuits that could

be mapped on the topology were run on the real device. Lines connecting the data points are guides to the eye.
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TABLE V. List of all 465 circuits used to test the fault-tolerance criterion. The elements consist of a range of three circuit IDs labeling the

subsequent circuits, which consist of a particular set of gates operating on three initial states |i〉 ∈ (|00〉, |0+〉, |�+〉), enumerated in this order.

0-2 |i〉 156-158 X2 CZ HHS HHS HHS Z2 CZ CZ Z1 |i〉 312-314 X1 HHS X1 HHS |i〉
3-5 X1 |i〉 159-161 Z2 HHS CZ X2 X2 Z1 Z2 X1 X1 |i〉 315-317 X1 HHS X1 HHS X1 HHS |i〉
6-8 X2 |i〉 162-164 X2 X1 CZ HHS CZ Z1 Z1 X1 X2 Z2 |i〉 318-320 X1 HHS X1 HHS X1 HHS X1 HHS |i〉
9-11 Z1 |i〉 165-167 Z2 X1 Z1 Z1 CZ Z1 X2 Z1 HHS CZ |i〉 321-323 X1 HHS X1 HHS X1 HHS X1 HHS X1 HHS |i〉
12-14 Z2 |i〉 168-170 CZ HHS X1 Z2 X2 X2 X2 Z2 HHS CZ |i〉 324-326 Z2 Z1 |i〉
15-17 HHS |i〉 171-173 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 |i〉 327-329 Z2 Z1 Z2 Z1 |i〉
18-20 CZ |i〉 174-176 Z2 Z2 Z2 X2 Z1 CZ CZ Z2 X2 X2 |i〉 330-332 Z2 Z1 Z2 Z1 Z2 Z1 |i〉
21-23 X2 Z1 |i〉 177-179 Z1 X2 HHS CZ X1 HHS CZ CZ X1 X1 |i〉 333-335 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i〉
24-26 HHS Z1 |i〉 180-182 Z2 Z2 |i〉 336-338 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i〉
27-29 Z1 Z2 |i〉 183-185 Z2 Z2 Z2 |i〉 339-341 CZ CZ X1 |i〉
30-32 X1 HHS |i〉 186-188 Z2 Z2 Z2 Z2 |i〉 342-344 CZ CZ X1 CZ CZ X1 |i〉
33-35 CZ Z2 |i〉 189-191 Z2 Z2 Z2 Z2 Z2 |i〉 345-347 CZ CZ X1 CZ CZ X1 CZ CZ X1 |i〉
36-38 Z2 Z1 CZ |i〉 192-194 Z2 Z2 Z2 Z2 Z2 Z2 |i〉 348-350 X1 CZ Z2 |i〉
39-41 Z1 X2 X2 |i〉 195-197 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i〉 351-353 X1 CZ Z2 X1 CZ Z2 |i〉
42-44 CZ CZ HHS |i〉 198-200 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i〉 354-356 X1 CZ Z2 X1 CZ Z2 X1 CZ Z2 |i〉
45-47 X1 X1 X1 |i〉 201-203 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i〉 357-359 CZ CZ X2 |i〉
48-50 Z2 X2 Z1 |i〉 204-206 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i〉 360-362 CZ CZ X2 CZ CZ X2 |i〉
51-53 X1 X2 X1 |i〉 207-209 CZ CZ |i〉 363-365 CZ CZ X2 CZ CZ X2 CZ CZ X2 |i〉
54-56 X2 X1 CZ X1 |i〉 210-212 CZ CZ CZ |i〉 366-368 Z1 Z1 X1 |i〉
57-59 HHS Z2 CZ Z1 |i〉 213-215 CZ CZ CZ CZ |i〉 369-371 Z1 Z1 X1 Z1 Z1 X1 |i〉
60-62 HHS X1 Z2 Z2 |i〉 216-218 CZ CZ CZ CZ CZ |i〉 372-374 Z1 Z1 X1 Z1 Z1 X1 Z1 Z1 X1 |i〉
63-65 CZ Z2 Z1 Z2 |i〉 219-221 CZ CZ CZ CZ CZ CZ |i〉 375-377 X2 Z2 HHS |i〉
66-68 HHS HHS HHS Z1 |i〉 222-224 CZ CZ CZ CZ CZ CZ CZ |i〉 378-380 X2 Z2 HHS X2 Z2 HHS |i〉
69-71 X2 Z2 HHS CZ |i〉 225-227 CZ CZ CZ CZ CZ CZ CZ CZ |i〉 381-383 X2 Z2 HHS X2 Z2 HHS X2 Z2 HHS |i〉
72-74 Z1 HHS CZ X2 Z2 |i〉 228-230 CZ CZ CZ CZ CZ CZ CZ CZ CZ |i〉 384-386 HHS HHS X2 |i〉
75-77 X2 Z2 Z1 HHS CZ |i〉 231-233 CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ |i〉 387-389 HHS HHS X2 HHS HHS X2 |i〉
78-80 HHS X2 Z2 CZ CZ |i〉 234-236 X1 X1 |i〉 390-392 HHS HHS X2 HHS HHS X2 HHS HHS X2 |i〉
81-83 X1 X2 X1 X2 X1 |i〉 237-239 X1 X1 X1 X1 |i〉 393-395 HHS CZ X2 CZ |i〉
84-86 Z2 Z1 X1 Z2 CZ |i〉 240-242 X1 X1 X1 X1 X1 |i〉 396-398 HHS CZ X2 CZ HHS CZ X2 CZ |i〉
87-89 HHS CZ HHS X2 CZ |i〉 243-245 X1 X1 X1 X1 X1 X1 |i〉 399-401 Z1 HHS HHS X2 |i〉
90-92 Z2 CZ X2 X2 X1 Z1 |i〉 246-248 X1 X1 X1 X1 X1 X1 X1 |i〉 402-404 Z1 HHS HHS X2 Z1 HHS HHS X2 |i〉
93-95 Z1 X2 Z1 X2 X1 Z1 |i〉 249-251 X1 X1 X1 X1 X1 X1 X1 X1 |i〉 405-407 Z2 Z1 X2 Z2 |i〉
96-98 Z1 Z2 X1 Z1 HHS X2 |i〉 252-254 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i〉 408-410 Z2 Z1 X2 Z2 Z2 Z1 X2 Z2 |i〉
99-101 Z2 CZ X1 HHS X1 CZ |i〉 255-257 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i〉 411-413 Z2 X1 Z2 X2 |i〉
102-104 X2 CZ HHS X2 CZ Z2 |i〉 258-260 HHS CZ |i〉 414-416 Z2 X1 Z2 X2 Z2 X1 Z2 X2 |i〉
105-107 X1 X1 X1 X2 X2 Z2 |i〉 261-263 HHS CZ HHS CZ |i〉 417-419 Z1 Z1 X2 X2 |i〉
108-110 Z1 X2 Z2 CZ X2 X1 X1 |i〉 264-266 HHS CZ HHS CZ HHS CZ |i〉 420-422 Z1 Z1 X2 X2 Z1 Z1 X2 X2 |i〉
111-113 HHS X2 X2 Z2 Z2 X1 X1 |i〉 267-269 HHS CZ HHS CZ HHS CZ HHS CZ |i〉 423-425 X2 HHS Z2 Z2 |i〉
114-116 Z2 X1 Z2 X2 CZ HHS CZ |i〉 270-272 HHS CZ HHS CZ HHS CZ HHS CZ HHS CZ |i〉 426-428 X2 HHS Z2 Z2 X2 HHS Z2 Z2 |i〉
117-119 X2 Z2 Z1 HHS Z1 HHS HHS |i〉 273-275 Z1 Z2 Z1 Z2 |i〉 429-431 Z1 Z2 Z1 HHS X1 |i〉
120-122 CZ Z2 Z1 Z2 X1 CZ X2 |i〉 276-278 Z1 Z2 Z1 Z2 Z1 Z2 |i〉 432-434 Z1 Z2 Z1 HHS X1 Z1 Z2 Z1 HHS X1 |i〉
123-125 X2 HHS Z1 X1 X2 CZ X2 |i〉 279-281 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i〉 435-437 Z1 CZ Z1 Z2 HHS |i〉
126-128 Z2 Z1 HHS HHS X2 X1 Z2 CZ |i〉 282-284 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i〉 438-440 Z1 CZ Z1 Z2 HHS Z1 CZ Z1 Z2 HHS |i〉
129-131 Z1 X2 Z1 HHS CZ Z2 Z2 X2 |i〉 285-287 X2 X2 |i〉 441-443 Z1 Z2 X2 Z1 HHS |i〉
132-134 CZ Z2 HHS Z2 HHS CZ Z2 HHS |i〉 288-290 X2 X2 X2 X2 |i〉 444-446 Z1 Z2 X2 Z1 HHS Z1 Z2 X2 Z1 HHS |i〉
135-137 CZ X2 CZ CZ X2 X2 Z2 Z2 |i〉 291-293 X2 X2 X2 X2 X2 X2 |i〉 447-449 X1 Z2 HHS CZ CZ |i〉
138-140 Z1 Z2 CZ CZ X1 X1 X2 X2 |i〉 294-296 X2 X2 X2 X2 X2 X2 X2 X2 |i〉 450-452 X1 Z2 HHS CZ CZ X1 Z2 HHS CZ CZ |i〉
141-143 HHS X1 X2 X1 X2 Z2 Z1 X1 |i〉 297-299 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 |i〉 453-455 X1 X1 X1 HHS Z2 |i〉
144-146 HHS CZ X2 HHS X1 X1 Z1 X1 X2 |i〉 300-302 X2 Z1 X2 Z1 |i〉 456-458 X1 X1 X1 HHS Z2 X1 X1 X1 HHS Z2 |i〉
147-149 X1 X1 HHS Z2 HHS HHS X2 Z2 CZ |i〉 303-305 X2 Z1 X2 Z1 X2 Z1 |i〉 459-461 HHS X1 Z2 X1 Z2 |i〉
150-152 X1 CZ HHS CZ HHS Z1 CZ CZ X2 |i〉 306-308 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i〉 462-464 HHS X1 Z2 X1 Z2 HHS X1 Z2 X1 Z2 |i〉
153-155 CZ X1 Z2 HHS X2 X1 Z1 Z1 HHS |i〉 309-311 X2 Z1 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i〉
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FIG. 7. Test of the fault-tolerance criterion in system (3) (see Sec. V) for all 465 circuits using the qubits (Q4, Q3, Q2, Q15, Q14) of the

IBM 16-qubit device ibmqx5 on April 20, 2018. Shown are the statistical distances to the ideal result for the selected bare (red plusses) and

encoded (green crosses) circuits, and the postselection ratios (blue dots). All plotted quantities are dimensionless. Only the circuits that could

be mapped on the topology were run on the real device. Lines connecting the data points are guides to the eye.

APPENDIX C: SPECIFICATION OF THE SIMULATION

MODELS

1. Spin qubits coupled to an environment

The model of five spin qubits coupled to an environment

with NE two-level defects is defined by the Hamiltonian

given in Eqs. (4)–(7). For this Hamiltonian, we numerically

solve the TDSE given in Eq. (1) by means of the Chebyshev

polynomial algorithm to machine precision [42,43,51], which

yields the state |�(t )〉 of the system after execution of a

particular circuit.

By construction, the only source of errors in this model is

the interaction of the qubits with the environment controlled

by the coupling strength λ. For λ = 0, the quantum computer

model is designed to work perfectly. Therefore, the quantum

gates in this model are not implemented by pulses, but by

choosing suitable parameters hα
n and Gα

nm for HQ given by

Eq. (5) [51], and having the system evolve through the TDSE

given in Eq. (1) for a certain time t . The specific set of

parameters for the gates used in the tested circuits is given

in Table VI. The two-qubit gate CNOTnm between qubits n

and m is implemented through the gate sequence HnInmHn,

where Hn is the Hadamard gate on qubit n and Inm implements

a two-qubit evolution of the form σ x
n + σ x

m − σ x
n σ x

m through

Eq. (5) (see Table VI).

In addition to the results for λ ∈ [0.01, 0.2] presented in

Sec. III, we have studied the performance of the circuits for

various numbers NE of two-level systems in the environment

(see Fig. 9) and various inverse temperatures β (see Fig. 10).

The number NE of two-level systems in the environment

is limited by two factors. On the one hand, it should not

be too small for decoherence effects to be observable, so

NE = 5 is the smallest case that we consider. In this case, the

virtual interaction between two spin qubits mediated by the

environment has a significantly smaller path than for larger

NE , so the influence of the environment on the performance

is rather strong [see Fig. 9(a)]. On the other hand, there is

a practical limitation given by the available computational

resources on the supercomputer. For NE = 27, the dimension

of the total Hilbert space is 232, so the simulation of the

full time evolution is rather expensive. Hence, this is the

bound we set for what can be simulated with a reasonable

amount of computer resources (CPU time and memory). By

comparing the results for NE = 20 to those for NE = 27,

shown in Figs. 9(b) and 9(c), respectively, we find that there is

no significant qualitative change. In particular, the statistical

distances Denc for the encoded circuits all lie between 0 and

0.15, with only small fluctuations between the results for

NE = 20 and NE = 27. But the main observation is that in

all cases, some circuits perform better when they are encoded,

while others are better without encoding.

The dependence of the fault-tolerance test on the inverse

temperature β is shown in Fig. 10. We find no significant

difference between the results for β = 0 and β = 1 shown in

Figs. 10(a) and 10(b), respectively. These cases represent the

high-temperature regime. In contrast, the results for β = 5,

shown in Fig. 10(c), resemble the results from the smallest

environment NE = 5, shown in Fig. 9(a). Hence, this low-

temperature regime indicates that the system is no longer

affected by pure decoherence, but that other effects also come

into play. However, although some influence of the tempera-

ture on the performance of the circuits can be observed, the

qualitative results do not change. This means that the bare cir-

cuits that outperform their encoded equivalents are the same

in each case. Hence, in this system, the criterion for fault toler-

ance is not satisfied in any of the regimes under investigation.

2. Transmon simulation

The Hamiltonian given in Eqs. (8)–(10) models five trans-

mon qubits coupled by six resonators, as schematically shown

in Fig. 3. The full set of relevant device parameters is
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FIG. 8. Test of the fault-tolerance criterion in the decoherence model [system (1), see Sec. III] using NE = 5, β = 1, and λ = 0.1 for the

full set of circuits. Shown are the statistical distances to the ideal result for the selected bare (red plusses) and encoded (green crosses) circuits,

and the postselection ratios (blue dots). All plotted quantities are dimensionless. Lines connecting the data points are guides to the eye.
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TABLE VI. Summary of the parameters for the required set of

quantum gates [see Eqs. (A7)–(A12)], implemented through the time

evolution of HQ given in Eq. (5). Each parameter hα
n and Gα

nm is given

in GHz, and the duration t of the corresponding gate is given in ns.

Gate hx
n hx

m hz
n Gx

nm t

Xn 1 0 0 π/2

Zn 0 15 + n/2 0 π/(30 + n)

Sn 0 15 + n/2 0 π/(60 + 2n)

Hn 15 + n/2 15 + n/2 0 π/
√

2/(30 + n)

Inm −0.025 −0.025 0 0.025 10π
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FIG. 9. Test of the fault-tolerance criterion for different environ-

ment sizes (a) NE = 5, (b) NE = 20, and (c) NE = 27. Shown are the

statistical distances to the ideal result for the selected bare (dashed

red line) and encoded (solid green line) circuits, and the postselection

ratios (blue dots). All plotted quantities are dimensionless. The

simulations were done for inverse temperature β = 1 and coupling

strength λ = 0.1. Lines connecting the data points are guides to

the eye.
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FIG. 10. Test of the fault-tolerance criterion for different inverse

temperatures (a) β = 0, (b) β = 1, and (c) β = 5. Shown are the

statistical distances to the ideal result for the selected bare (dashed

red line) and encoded (solid green line) circuits, and the postselec-

tion ratios (blue dots). All plotted quantities are dimensionless. All

simulations were done for environment size NE = 20 and coupling

strength λ = 0.1. Lines connecting the data points are guides to the

eye.

TABLE VII. Device parameters of the transmon Hamiltonian

defined in Eq. (9). All values are given in GHz. The charging energies

EC and the Josephson energies EJ define the transmon qubits. The

qubit frequencies ω have been obtained by preparing the respective

qubit in the state |+〉 and all other qubits in the state |0〉, having

the entire system evolve for 1000 ns, and measuring the frequency

of 〈σ x (t )〉. The drive frequencies ωdr result from additionally tuning

this ω in the single-qubit pulse-optimization procedure. These fre-

quencies are only used by the gate set labeled *-withf.

q0 q1 q2 q3 q4

EC/2π 0.301 0.301 0.301 0.301 0.301

EJ /2π 11.6671 12.1273 13.003 12.2456 11.1943

ω/2π 4.97154 5.07063 5.26657 5.10145 4.86036

ωdr/2π 4.97164 5.07043 5.26634 5.10147 4.86055

summarized in Table VII and Table VIII. We numerically

solve the TDSE in Eq. (1) for the time-dependent Hamiltonian

given in Eq. (8), using the unconditionally stable Suzuki-

Trotter product-formula algorithm [50,51] to second order, to

obtain |�(t )〉 at any time t . In this work, we express the full

state |�(t )〉 in the joint eigenbasis of the five transmons and

the six resonators |m0 · · ·m4; k0 · · · k5〉, where each transmon

index mi enumerates the first four eigenstates of 4ECi n̂
2
i −

EJ i cos ϕ̂i , and the resonator indices kr enumerate the first

four Fock states. The algorithm results in four-component

updates of the full state |�(t )〉 at each time step τ = 0.001 ns.

We have verified that this basis accurately covers the system

dynamics by comparison with exact diagonalization and with

the simulation in the charge basis (see [5] where 17 levels

were included for each transmon).

Quantum gates are implemented by choosing a particular

pulse for ngi (t ) in the time-dependent Hamiltonian given in

Eq. (9). As in the corresponding experiments [52,56], a single-

qubit pulse on qubit i is defined by

ngi (t ) = �G(t ) cos(2πf t − γ )

+ βX�̇G(t ) cos
(

2πf t − γ −
π

2

)

, (C1)

where �G(t ) is a Gaussian with amplitude �X, duration TX =
80 ns, and width σ = TX/4 (see [5]), βX is the DRAG coef-

ficient [53,57], f is the drive frequency, and γ is a phase pa-

rameter used to implement VZ gates [52]. The two-qubit CNOT

gate is implemented using an echoed cross-resonance scheme

[5,47,56], in which the single-qubit pulses implementing the

echo are realized by Eq. (C1), and the flat-top Gaussians are

TABLE VIII. Device parameters of the resonator Hamiltonian

defined in Eq. (10). All values are given in GHz.

r0 r1 r2 r3 r4 r5

�/2π 6.45 6.25 6.65 6.65 6.45 6.85

G/2π 0.07 0.07 0.07 0.07 0.07 0.07

Coupled to q1, q2 q0, q1 q2, q3 q1, q4 q3, q4 q0, q4
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TABLE IX. Parameters of the Gaussian xpih-* pulses defined

by Eq. (C1). The drive frequencies f are given in GHz and the pulse

time TX and the DRAG coefficient βX are given in ns. The Gaussian

drive amplitudes �X are unitless. All pulses labeled *-withf repre-

sent pulses with frequency tuning, meaning that the drive frequency

has additionally been optimized in the pulse-optimization procedure.

Pulse name f TX �X βX

xpih-0 4.97154 80 0.00238 1.335

xpih-1 5.07063 80 0.00236 −1.904

xpih-2 5.26657 80 0.00233 −2.165

xpih-3 5.10145 80 0.00236 0.498

xpih-4 4.86036 80 0.00241 2.276

xpih-0-withf 4.97164 80 0.00239 0.239

xpih-1-withf 5.07043 80 0.00236 0.238

xpih-2-withf 5.26634 80 0.00233 0.229

xpih-3-withf 5.10147 80 0.00236 0.232

xpih-4-withf 4.86055 80 0.00241 0.236

obtained from the same equation by choosing βX = 0 and

�G(t ) to rise for 0 � t � 15 ns with σ = 5 ns, stay constant at

�CR for 15 < t < 15 ns + TCR, and fall again for 15 + TCR �

t � 30 ns + TCR (see [5] for more information).

We optimize two sets of gate pulses for the experiments,

namely, one without frequency tuning and one with frequency

tuning. The pulses without frequency tuning use the qubit

frequencies as drive frequencies, i.e., f = ω/2π , where the

qubit frequencies ω are taken from Table VII. In contrast,

with frequency tuning, the pulse-optimization procedure also

fits the drive frequencies, such that the resulting pulses have

the drive frequencies f = ωdr/2π (the corresponding values

are also listed in Table VII). To distinguish between both gate

sets, we attach the suffix -withf to the pulses with frequency

tuning. The relevant parameters resulting from a Nelder-Mead

optimization [58] are summarized in Table IX and Table X.

TABLE XI. Gate metrics resulting from the pulse-optimization

procedure. � is the distance objective (loss function), η♦ is the

diamond distance, Favg is the average gate fidelity, and u is the

unitarity (see [5] for more information about these metrics).

Pulse name � η♦ Favg u

xpih-0 4.60×10−5 0.007 0.9930 0.9860

xpih-1 1.19×10−4 0.011 0.9884 0.9770

xpih-2 7.52×10−6 0.002 0.9962 0.9925

xpih-3 8.99×10−6 0.003 0.9965 0.9930

xpih-4 4.17×10−5 0.006 0.9934 0.9868

xpih-0-withf 4.59×10−5 0.007 0.9930 0.9860

xpih-1-withf 1.14×10−4 0.011 0.9887 0.9774

xpih-2-withf 7.20×10−6 0.002 0.9963 0.9927

xpih-3-withf 8.85×10−6 0.003 0.9965 0.9930

xpih-4-withf 3.87×10−5 0.006 0.9936 0.9873

cnot-1-0 1.34×10−2 0.071 0.9852 0.9758

cnot-1-4 1.08×10−1 0.177 0.9621 0.9668

cnot-2-1 4.68×10−2 0.119 0.9714 0.9615

cnot-3-2 1.83×10−2 0.088 0.9852 0.9777

cnot-3-4 9.54×10−2 0.179 0.9671 0.9720

cnot-4-0 2.78×10−1 0.284 0.9347 0.9783

cnot-1-0-withf 5.70×10−2 0.149 0.9751 0.9728

cnot-1-4-withf 7.13×10−3 0.056 0.9841 0.9712

cnot-2-1-withf 1.38×10−2 0.081 0.9806 0.9668

cnot-3-2-withf 1.21×10−1 0.207 0.9644 0.9764

cnot-3-4-withf 1.88×10−2 0.090 0.9832 0.9740

cnot-4-0-withf 8.27×10−2 0.168 0.9739 0.9806

For each pulse, we evaluate various gate metrics such as

the matrix distance � used as the objective function in the

optimization [5], the diamond distance η♦ [35], the average

gate fidelity Favg [59], and the unitarity u [60]. These metrics

are reported in Table XI.

TABLE X. Parameters defining the echoed cross-resonance pulses (CR2 in [5]) to implement the CNOT gate. The drive frequencies fC and

fT are given in GHz. The times TCR of the flat top in a cross-resonance pulse, the Gaussian pulse times TX , and the DRAG coefficients βC

and βT are given in ns. The Gaussian drive amplitudes �CR and �C on the control qubit and �T on the target qubit are unitless. All pulses

labeled *-withf represent pulses with frequency tuning, meaning that the drive frequency has also been optimized in the pulse-optimization

procedure.

Pulse name fC fT TCR TX �CR �C βC �T βT

cnot-1-0 5.07063 4.97154 76.955 80 0.0097 0.00461 0.640 0.00238 1.335

cnot-1-4 5.07063 4.86036 64.161 80 0.0183 0.00476 −0.148 0.00241 2.276

cnot-2-1 5.26657 5.07063 33.398 80 0.0235 0.00465 −0.036 0.00236 −1.904

cnot-3-2 5.10145 5.26657 242.064 80 0.0111 0.00471 0.508 0.00233 −2.165

cnot-3-4 5.10145 4.86036 33.247 80 0.0290 0.00465 0.640 0.00241 2.276

cnot-4-0 4.86036 4.97154 105.151 80 0.0210 0.00449 −1.511 0.00238 1.335

cnot-1-0-withf 5.07043 4.97164 73.538 80 0.0101 0.00477 0.798 0.00239 0.239

cnot-1-4-withf 5.07043 4.86055 109.439 80 0.0114 0.00472 0.502 0.00241 0.236

cnot-2-1-withf 5.26634 5.07043 82.077 80 0.0111 0.00463 0.661 0.00236 0.238

cnot-3-2-withf 5.10147 5.26634 58.763 80 0.0429 0.00480 −0.198 0.00233 0.229

cnot-3-4-withf 5.10147 4.86055 85.294 80 0.0118 0.00474 0.247 0.00241 0.236

cnot-4-0-withf 4.86055 4.97164 98.599 80 0.0239 0.00483 0.115 0.00239 0.239
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