000858722 001__ 858722 000858722 005__ 20240619083548.0 000858722 0247_ $$2doi$$a10.1021/acs.langmuir.8b02498 000858722 0247_ $$2ISSN$$a0743-7463 000858722 0247_ $$2ISSN$$a1520-5827 000858722 0247_ $$2pmid$$apmid:30392379 000858722 0247_ $$2WOS$$aWOS:000452693100019 000858722 0247_ $$2altmetric$$aaltmetric:51300124 000858722 037__ $$aFZJ-2018-07567 000858722 082__ $$a540 000858722 1001_ $$0P:(DE-Juel1)168482$$aLi, Run$$b0 000858722 245__ $$aTumbling of Quantum Dots: Rheo-Optics 000858722 260__ $$aWashington, DC$$bACS Publ.$$c2018 000858722 3367_ $$2DRIVER$$aarticle 000858722 3367_ $$2DataCite$$aOutput Types/Journal article 000858722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547738792_16920 000858722 3367_ $$2BibTeX$$aARTICLE 000858722 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000858722 3367_ $$00$$2EndNote$$aJournal Article 000858722 520__ $$aLinear flow dichroism is shown to be a powerful tool to characterize the hydrodynamic dimensions of extremely small nonspherical colloids in solution. Dispersions of prolate and oblate quantum dots (QDs) are employed to investigate the validity of flow dichroism as a characterization tool. Shape-anisotropic QDs are important from an application perspective, where it is necessary to have a good knowledge of their hydrodynamic dimensions to predict and control their orientation during solution processing. Flow dichroism quantifies the tumbling motion of QDs in shear flow by optical means, which provides a characteristic signature of the particle shape, hydrodynamic friction, and size distribution. The effects of particle size and shape, size polydispersity, and shear rate on the temporal evolution of the flow-induced alignment are discussed in detail on the basis of numerical solutions of the Smoluchowski equation that describes the motion for the probability of the orientation of colloids in shear flow. It is shown that the combination of flow-dichroism experiments and the theoretical approach on the basis of the Smoluchowski equation provides a means to measure hydrodynamic aspect ratios and polydispersity, which for such small particles is not feasible with standard methods similar to light scattering. Flow dichroism will be useful not only for shape-anisotropic colloidal QDs, but also for other nanoscale systems. 000858722 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000858722 588__ $$aDataset connected to CrossRef 000858722 7001_ $$0P:(DE-Juel1)130920$$aRipoll, Marisol$$b1$$eCorresponding author 000858722 7001_ $$00000-0003-0163-485X$$aReddy, Naveen$$b2 000858722 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b3 000858722 7001_ $$0P:(DE-HGF)0$$aDierick, Ruben$$b4 000858722 7001_ $$00000-0002-7041-3375$$aHens, Zeger$$b5 000858722 7001_ $$00000-0002-9253-9008$$aClasen, Christian$$b6 000858722 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.8b02498$$gVol. 34, no. 48, p. 14633 - 14642$$n48$$p14633 - 14642$$tLangmuir$$v34$$x1520-5827$$y2018 000858722 8564_ $$uhttps://juser.fz-juelich.de/record/858722/files/acs.langmuir.8b02498.pdf$$yRestricted 000858722 8564_ $$uhttps://juser.fz-juelich.de/record/858722/files/acs.langmuir.8b02498.pdf?subformat=pdfa$$xpdfa$$yRestricted 000858722 909CO $$ooai:juser.fz-juelich.de:858722$$pVDB 000858722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168482$$aForschungszentrum Jülich$$b0$$kFZJ 000858722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130920$$aForschungszentrum Jülich$$b1$$kFZJ 000858722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b3$$kFZJ 000858722 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000858722 9141_ $$y2018 000858722 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000858722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000858722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000858722 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000858722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2017 000858722 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000858722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000858722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000858722 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000858722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000858722 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000858722 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000858722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000858722 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0 000858722 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x1 000858722 980__ $$ajournal 000858722 980__ $$aVDB 000858722 980__ $$aI:(DE-Juel1)ICS-2-20110106 000858722 980__ $$aI:(DE-Juel1)ICS-3-20110106 000858722 980__ $$aUNRESTRICTED 000858722 981__ $$aI:(DE-Juel1)IBI-5-20200312 000858722 981__ $$aI:(DE-Juel1)IAS-2-20090406