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Motivation: Fire safety in modern architecture

Modern architecture and large–scale projects (like BER)
may not fit in ’building code’.
Individual considerations necessary:

Model experiments, CFD investigations, ...

Figure: Interior of BMW World, Munich.
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Modeling fires

Processes to model:

Fluid dynamics.
Navier–Stokes
equations.
Turbulence modeling.

Radiation.
Discrete Transfer
Radiation.
Discrete Ordinates.
Monte–Carlo.

Combustion
Mixture fraction.
Finite rate kinetics.

Pyrolysis.
Figure: Burning solid fuel in air with
physical processes involved. [1]
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Modeling: Equations for smoke propagation

Smoke propagation with incompressible Navier–Stokes
(INS) equations:

∇ · u = 0
ρ0 [∂tu + (u · ∇)u] +∇p −∇(2µ εij(u)) = f(T )

ρ0 [∂tT + (u · ∇)T ]− 2
µ

cp
εij(u) :∇u−∇ ·

( µ
Pr
∇T

)
= γ

with strain rate tensor εij(u) = 1
2

[
∇u + (∇u)T ].

Turbulence model: Smagorinsky–Lilly LES [2]:

ν = νmol + νturb with νturb = (Csh)2 ∣∣∣∣εij(u)
∣∣∣∣

2 .
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JuFire

Investigate applicability of Finite Element Methods (FEM)
for fire simulation.

Use open–source library deal.II [3].
’Toolbox’ for the creation of FEM codes.

Differential Equations Analysis Library
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JuFire: Features

Implemented:
Unstructured grids.
Continuous Galerkin Methods.
Adaptive mesh refinement (AMR).
MPI parallelization.
Utilization of CAD models as
manifolds for mesh refinement.

Current field of activity:
Buoyancy driven flows.

Future work:
Discontinuous Galerkin methods.
p–adaptivity.

December 08, 2017 Marc Fehling Slide 8 18



M
em

be
ro

ft
he

H
el

m
ho

ltz
-A

ss
oc

ia
tio

n

Adaptive mesh refinement (AMR)

Solution of differential equations with FEM requires:
Discretization of space in cells of length h.
Shape functions with polynomial degree p.

But: The more accurate the solution by choosing h and p,
the longer the computation.

→ Adaptive refinement as a ’compromise’.
Adjustment of parameters locally where necessary.
Variable mesh precision at runtime.

J.
D

re
he

r,
R

U
B
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AMR: Algorithm

How to determine refinement criteria?

Set up decision criterion for refinement/coarsening.
Our choice:

Estimate error on each cell. Common: ||∇u||
Normalize values with respect to all cells.

Flag top/lower part for refinement/coarsening at each step.
Define max/min refinement levels as upper/lower bounds.

Cells are not allowed to differ by more than one level of
refinement.
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AMR: Example

Demonstration of adaptive mesh refinement via moving
vortex test case as a shape–preserving potential stream.

Figure: Video of velocity magnitude of moving vortex, overlayed
with corresponding mesh.
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AMR: Benefits

Comparison of runtime and accuracy between uniform and
adaptively refined meshes with the moving vortex example.
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Figure: Global L2–errors at each
periodic pass–through of the
vortex.

adaptive: 5×5 . . . 320×320 cells
uniform: 160×160 cells
uniform: 320×320 cells
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AMR
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Figure: Execution time of the
vortex simulation, run in serial on
a common desktop computer.
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AMR: Errors
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Figure: Static mesh.
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Figure: Adaptive mesh.

1 pass–through.
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Figure: Static mesh.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

X Axis

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y Axis

1.8848e-7

3.7569e-7

5.629e-7

1.270e-09

7.501e-07

Error

Figure: Adaptive mesh.

2 pass–throughs.
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AMR: Errors
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Figure: Static mesh.
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Figure: Adaptive mesh.

3 pass–throughs.
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Figure: Static mesh.
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Figure: Adaptive mesh.

4 pass–throughs.
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Figure: Static mesh.
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Figure: Adaptive mesh.

5 pass–throughs.
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Buoyancy driven flows – Work in progress

Figure: Video of velocity & temperature with constant heat source.
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Buoyancy driven flows – Possible error source

Figure: Temperature with constant heat source.
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Heat equation with FEM – Possible error source

∂tu − ν∇2u = 0

Figure: Solution of heat equation at advanced time.
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Flow in exemplary underground – Work in progress

Figure: CAD model of exemplary underground station.

Figure: Initial mesh for simulation.
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Summary & Outlook

Summary:
Adaptive Mesh Refinement works satisfactorily (for now).
Flaws in solving heat equation need to be cleared.

Future work:
Implementation of models.

Radiation, combustion, pyrolysis, ...
Extension of numerical methods.

DG methods, p-adaptivity, ...

Comparison with other fire solvers.
Validation using experiments.

Thank you for your kind attention!
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JuFire: Algorithm

Time evolution with backward differentiation formula (BDF)
Taylor–Hood elements [5]: (u,p)∈Qdim

k+1 ×Qk

Decoupling of (u,p) by projection scheme
Leads to the pressure–Poisson equation

Stabilization of momentum equation
Taylor–Galerkin stabilization [6] for Taylor–Hood elements

Additional diffusion in flow direction

Grad–div stabilization [7] to enforce ∇ · u=0

Neumann series for fast matrix assembly

Boussinesq approximation for buoyancy force density
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Unstructured Grids: Example: T–pipe

Why T–pipe?
Compound bodies.
Crooked areas (→ cylinder casing area).
Discontinuous edges (→ ’welding seam’).

Develop procedure for the creation of appropriate initial
meshes.

CAD model. Initial mesh.
December 08, 2017 Marc Fehling Slide 25 18
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Iterations of global refinement:

0x 1x

2x 3x
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Numerical methods

Spatial discretization methods for computational fluid
dynamics and software packages using it:

Finite Difference Method (FDM).
Open source: NIST Fire Dynamics Simulator (FDS), ...

Finite Volume Method (FVM).
Open source: FireFOAM (OpenFOAM), ...

Finite Element Method (FEM).
Lattice–Boltzmann Method (LBM).
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FEM: Features

Why use FEM?

Unstructured grids.
Allow for better domain representation without aliasing.

hp–adaptivity.
Dynamic resolution of numerical grid.
Adaptive polynomial degree of basis functions.
→ Increase accuracy where the action is happening!

Discontinuous Galerkin (DG) methods.
Allow discontinuities across cell borders.
Continuous Galerkin (CG) methods unstable for advection
like problems, thus require stabilization.
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FEM: Formulation

Solve variational equation from ’weak’ formulation of the
differential equation with bilinear form a(u, v):

∃u ∈ V : ∀v ∈ V : a(u, v) = f (v)

Choose subspace Vh with basis wi, out of which the
approximate solution uh =

∑
uiwi ∈ Vh will be constructed:

a(uh,wj) =
∑

a(wi ,wj) ui = f (wj) → AU = F

Figure: Q1 elements in 2D (source: deal.II)
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Verification: Richardson Extrapolation

How to get convergence rates of time and space
dependent problems?
Cancel out redundant error with Richardson extrapolation.
Constant ratio r for successive refinement (here: space).

f1 − f0 = ct ∆tpt + ch ∆hph

f2 − f0 = ct ∆tpt + ch (r∆h)ph

f3 − f0 = ct ∆tpt + ch (r2∆h)ph

 ln

(
f3 − f2
f2 − f1

)
= ph ln(r)

Space Time

FDS 1.9244 2.0721
JuFire 3.0894 0.9715

Table: Examplary convergence rates for a McDermott testcase [4].
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HPC on JURECA: Parallelization

MPI parallelization with Trilinos and p4est through
deal.II backends.

24 48 96 192 384 768 1,536 3,072 6,144

103

104

cores

w
al

lc
lo

ck
tim

e
[s

]

measured time, 64×64×64 cells
ideal slope, 64×64×64 cells
measured time, 128×128×128 cells
ideal slope, 128×128×128 cells

Figure: Strong scaling on JURECA for
fixed 3D problems with 262,144 and
2,097,152 cells, respectively.

Figure: Examplary domain
decomposition with p4est

in an AMR case.
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