000858756 001__ 858756
000858756 005__ 20240619083548.0
000858756 037__ $$aFZJ-2018-07601
000858756 041__ $$aEnglish
000858756 1001_ $$0P:(DE-Juel1)173831$$aPark, Gunwoo$$b0$$eCorresponding author$$ufzj
000858756 1112_ $$a2nd Joint Summer School SFB 985 & Georgia Institute of Technology$$cMonschau$$d2018-07-09 - 2018-07-12$$wGermany
000858756 245__ $$aFinite element analysis of time-developing concentration- polarization and fouling layers for cross-flow ultrafiltration in a cylindrical membrane pipe
000858756 260__ $$c2018
000858756 3367_ $$033$$2EndNote$$aConference Paper
000858756 3367_ $$2BibTeX$$aINPROCEEDINGS
000858756 3367_ $$2DRIVER$$aconferenceObject
000858756 3367_ $$2ORCID$$aCONFERENCE_POSTER
000858756 3367_ $$2DataCite$$aOutput Types/Conference Poster
000858756 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1546440850_27602$$xOther
000858756 520__ $$aThe similarity solution of a boundary layer has been frequently applied to the modeling of concentration profiles of dispersions in the case of cross-flow ultrafiltration in a cylindrical membrane pipe. The main advantage of the similarity framework is to express the advection- diffusion equation in the boundary layer as a set of ordinary differential equations with given transport properties such as the concentration-dependent diffusion coefficient and the suspension viscosity. It is a challenging task, however, to extend the similarity framework to the time development of the concentration polarization (CP) and fouling layers, especially when a complex membrane geometry is considered. In this study, we present a finite element analysis of the time-developing CP and membrane cake layers which we compare with the standard similarity solution [1]. The transport properties required as input to the finite element and similarity calculations are determined and discussed for charge-stabilized suspensions of impermeable particles[2], non-ionic microgels[3], and ionic microgels with concentration- dependent radii [4].[1] G. W. Park, M. Brito, A. Denton, and G. Nägele, work in progress.[2] Roa, R. et al., “Ultrafiltration of charge-stabilized dispersions at low salinity,” Soft Matter 12, 4638–4653 (2016).[3] Roa, R., E. K. Zholkovskiy, and G. Naegele, “Ultrafiltration modeling of non-ionic microgels,” Soft Matter 11, 4106–4122 (2015).[4] Brito, M. et al., work in progress.
000858756 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858756 536__ $$0G:(GEPRIS)221475706$$aSFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)$$c221475706$$x1
000858756 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x0
000858756 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000858756 7001_ $$0P:(DE-Juel1)168542$$aBrito, Mariano$$b1$$ufzj
000858756 7001_ $$0P:(DE-HGF)0$$aZholkovskiy, E.$$b2
000858756 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b3$$ufzj
000858756 909CO $$ooai:juser.fz-juelich.de:858756$$pVDB
000858756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173831$$aForschungszentrum Jülich$$b0$$kFZJ
000858756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168542$$aForschungszentrum Jülich$$b1$$kFZJ
000858756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b3$$kFZJ
000858756 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858756 9141_ $$y2018
000858756 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000858756 980__ $$aposter
000858756 980__ $$aVDB
000858756 980__ $$aI:(DE-Juel1)ICS-3-20110106
000858756 980__ $$aUNRESTRICTED