001     858756
005     20240619083548.0
037 _ _ |a FZJ-2018-07601
041 _ _ |a English
100 1 _ |a Park, Gunwoo
|0 P:(DE-Juel1)173831
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2nd Joint Summer School SFB 985 & Georgia Institute of Technology
|c Monschau
|d 2018-07-09 - 2018-07-12
|w Germany
245 _ _ |a Finite element analysis of time-developing concentration- polarization and fouling layers for cross-flow ultrafiltration in a cylindrical membrane pipe
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1546440850_27602
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a The similarity solution of a boundary layer has been frequently applied to the modeling of concentration profiles of dispersions in the case of cross-flow ultrafiltration in a cylindrical membrane pipe. The main advantage of the similarity framework is to express the advection- diffusion equation in the boundary layer as a set of ordinary differential equations with given transport properties such as the concentration-dependent diffusion coefficient and the suspension viscosity. It is a challenging task, however, to extend the similarity framework to the time development of the concentration polarization (CP) and fouling layers, especially when a complex membrane geometry is considered. In this study, we present a finite element analysis of the time-developing CP and membrane cake layers which we compare with the standard similarity solution [1]. The transport properties required as input to the finite element and similarity calculations are determined and discussed for charge-stabilized suspensions of impermeable particles[2], non-ionic microgels[3], and ionic microgels with concentration- dependent radii [4].[1] G. W. Park, M. Brito, A. Denton, and G. Nägele, work in progress.[2] Roa, R. et al., “Ultrafiltration of charge-stabilized dispersions at low salinity,” Soft Matter 12, 4638–4653 (2016).[3] Roa, R., E. K. Zholkovskiy, and G. Naegele, “Ultrafiltration modeling of non-ionic microgels,” Soft Matter 11, 4106–4122 (2015).[4] Brito, M. et al., work in progress.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|x 0
|f POF III
536 _ _ |a SFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)
|0 G:(GEPRIS)221475706
|c 221475706
|x 1
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 0
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 1
700 1 _ |a Brito, Mariano
|0 P:(DE-Juel1)168542
|b 1
|u fzj
700 1 _ |a Zholkovskiy, E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Naegele, Gerhard
|0 P:(DE-Juel1)130858
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:858756
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173831
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130858
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21