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Abstract
Crossflow filtration is a pressure-driven separation and enrichment process of colloidal suspensions where the feed suspen-
sion is continuously pumped tangentially through a membrane pipe. The transmembrane pressure (TMP) causes permeate
(solvent) to flow out through the membrane, while particles are retained inside the pipe. Consequently, a particle-enriched
diffuse layer is formed near the membrane wall which reduces the filtration efficiency. This so-called concentration-
polarization (CP) layer is due to the balance of flow advection of particles towards and gradient diffusion away from
the membrane. The CP layer with its osmotic pressure operates against the TMP and counteracts the permeate flow. In this
study, the suspension flow is described by the effective Stokes equation, and the permeate flux by Darcy’s law. We use a
hard-sphere model for the suspension properties such as gradient diffusion coefficient, suspension viscosity, and osmotic
pressure. The coupled advection-diffusion and Stokes flow equations are solved by a finite element method (FEM) using
Comsol. As a reference, we obtained analytic solutions of pure solvent flow and suspension flow where the transport prop-
erties are taken as concentration independent [1]. Furthermore, we generalize the FEM analysis to a segmented membrane
with impermeable rings which we observe a weakening of the CP layer [2].
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1 Modeling of crossflow ultrafiltration

1.1 Membrane geometry
- Axisymmetric cylindrical membrane pipe with length L = 0.5m

and radius R = 0.5mm (ε = R/L = 10−3)
- In the case of a segmented membrane, two impermeable rings are

tethered of the length Lseg

1.2 Effective Navier-Stokes equation
We use the effective Navier-Stokes equation for constant suspen-

sion mass density ρ:

ρ

(
∂

∂t
+ v · ∇

)
v = −P I + η(φ)

(
∇v + (∇v)T

)
where η(φ) is the suspension viscosity using the hard-sphere model
in [3] which depends on particle volume fraction φ and P is the pres-
sure. The solvent viscosity ηs is that of water at room temperature.

1.3 Advection-diffusion equation
In the ultrafiltration regime, the diffusivity of particles is domi-

nated by Brownian motion with the particle flux given by

jφ = φv −D(φ)∇φ,

whereD is the long-time collective diffusion coefficient of particles.
For a hard-sphere suspension, we use the short-time form [3]

D(φ)/D0 = 1 + 1.454φ− 0.45φ2 + O(φ3),

whereD0 = 2.14×10−11m2/sec is the single-particle self-diffusion
coefficient described by the Stokes-Einstein relation. In the above
particle flux, the advection-diffusion equation is

∂φ

∂t
+∇ · (φv) = ∇ · (D(φ)∇φ) .

1.4 Darcy’s law
We describe the solvent permeable flux by an integrated version of

Darcy’s law,

vw(z) = Lp
(
P (z)− Pperm − Π(φw; z)

)
,

where Lp = 6.7 × 10−10m/(Pa sec) is the solvent permeability of
the membrane, Pperm = 1 atm is the applied constant pressure out-
side the membrane wall, and Π(φ) is the osmotic pressure described
by Carnahan-Starling equation:

Π(φ) = kBT c(φ)
1 + φ + φ2 − φ3

(1− φ)3
,

where c is a number concentration of particles.

1.5 Boundary conditions
- (center) Axisymmetry: v(r = 0, z) = 0

- (wall) Darcy’s law: v(r = R, z) = vw(z)

- (wall) No slip along z: u(r = R, z) = 0

- (wall) No particle flux: −r̂ · jφ(r = R, z) = 0

- (inlet) Particle: φ(r, z = 0) = φb

- (inlet and outlet) Pressure: P (r, z = 0) = Pin, P (r, z = L) = Pout

1.6 Operating conditions
For given geometrical parameters (L and R), membrane prop-

erty (Lp), and suspension properties (D, η, and Π), the operat-
ing conditions are characterized by the longitudinal pressure differ-
ence (∆LP = Pin − Pout) and the transmembrane pressure (TMP:
∆TP = (1/L)

∫ L
0 (P (z)− Pperm)dz). The reference operating con-

dition is ∆TP=5 kPa and ∆LP = 130 Pa.

1.7 Finite element methods (FEM)
- We use Comsol Multiphysics with laminar flow and transport

of dilute species packages using a time-dependent solver for the
advection-diffusion equation

- P1/P1 elements for v and P , and P2 element for φ
- Meshes are stretched along z (with mesh-independent check)

2 Reference suspension

2.1 Assumptions

We make the following assumptions for the reference system and
the operating conditions, which are similar to those in [4]:

- Effective permeability: Qsurf ∼ Qin
(Flow rate through the membrane wall (Qsurf) is comparable with the flow rate
through the inlet (Qin))

- Stokes flow assumption: εRe� 1

- Regular perturbation expansion with respect to ε0

Based on these assumptions, we derive an exact solution for the flow
profile of pure solvent using a separability ansatz.
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Figure 1: Pressure distribution function of the analytic solution of the Stokes
equation (lines), the corresponding FEM results (open symbols) and the Navier-
Stokes equation for steady-state (closed symbols) for pure solvent flow with dif-
ferent ∆LP = 30, 55, 100, 1000, and 10000 (Pa) as indicated.

2.2 Boundary layer analysis (BLA)

We propose a new BLA employing the dominant balance be-
tween the convective contribution from the solvent permeate flux and
the diffusive contribution in the advection-diffusion equation. Based
on the stretching variable εδ = δ/R where δ is the expected thick-
ness of the boundary layer due to this dominant balance, we obtained
a solution using a singular perturbation expansion in ε0δ [1].
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Figure 2: Particle concentration at membrane wall for constant viscosity η = ηs
and constant diffusion coefficient D = D0. Inset shows εδ = δ/R obtained from
FEM using δ(z) =

∫ R
0 (R−r)(φ−φb)rdr/

∫ R
0 (φ−φb)rdr (blue), and its expected

slope on the new BLA (red).

2.3 Concentration-dependent transport properties
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Figure 3: FEM results of a hard-sphere suspension (open symbol) and associated
solutions for the suspension flow for constant transport properties (lines) shows at
the normalized longitudinal velocity along the centerline umax(z) = u(r = 0, z)
(left), and normalized longitudinal and transversal velocities along the radial di-
rection (right).

3 Segmented membrane pipe
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Figure 4: Membrane concentration of particles in a homogeneous membrane
pipe (black), and a membrane pipe with impermeable rings of length Lseg = 10R
(blue), and Lseg = 100R (red) using a hard-sphere model.
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Figure 5: Suspension flow streamlines of a hard-sphere suspension pumped
through the segmented membrane of length Lseg = 100R. Upper bar is |v|.
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Figure 6: Diffusive flux contribution∇ · (D∇φ) to the advection-diffusion equa-
tion (colors), and streamlines of the particle flux jφ (lines) near the membrane wall
for 0.9R ≤ r ≤ R.

Concluding Remarks
1. We have obtained an exact solution for the solvent flow using a

separability ansatz with the assumptions (i) of effective perme-
ability, (ii) Stokes flow, and (iii) regular perturbation expansion
with respect to ε0.

2. Based on assumptions of (i-iii), we developed a new boundary
layer analysis making use of the dominant balance between the
transversal (solvent permeate) convection contribution and the
diffusion contribution in the advection-diffusion equation.

3. The quantitative agreement between FEM results and reference
solutions supports the validity on FEM in this model. We have
extended FEM case for a membrane with segmented by imper-
meable rings.

4. In the impermeable segmentation, a relaxing CP layer is observed
where the particles are diffusing away from the membrane wall.
The flow profile in the impermeable ring region is similar to that
of the Hagen-Poiseuille flow.
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