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We present a new lattice formulation of chiral effective field theory interactions with a simpler decomposition

into spin channels. With these interactions the process of fitting to the empirical scattering phase shifts is

simplified, and the resulting lattice phase shifts are more accurate than in previous studies. We present results

for the neutron-proton system up to next-to-next-to-next-to-leading order for lattice spacings of 1.97, 1.64, 1.32,

and 0.99 fm. Our results provide a pathway to ab initio lattice calculations of nuclear structure, reactions, and

thermodynamics with accurate and systematic control over the chiral nucleon-nucleon force.
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I. INTRODUCTION

Chiral effective field theory (EFT) organizes the interac-

tions of nucleons in powers of momenta and factors of the

pion mass near the chiral limit where the light quarks are

massless. We label terms that carry a total of n powers of

nucleon momenta or factors of the pion masses as order Qn.

The most important interactions at low energy are at order Q0,

or leading order (LO). Next-to-leading-order (NLO) interac-

tions correspond to order Q2, next-to-next-to-leading-order

(N2LO) terms to Q3, and next-to-next-to-next-to-leading-

order (N3LO) to Q4. See Ref. [1] for a review of chiral EFT.

Nuclear lattice simulations using chiral EFT have been used

in recent years to describe the structure and scattering of

atomic nuclei [2–7]. However, the treatment of nuclear forces

at higher orders in the chiral EFT expansion is more difficult

on the lattice due to the breaking of rotational invariance pro-

duced by nonzero lattice spacing [8,9]. Fitting the unknown

coefficients of the short-range lattice interactions to empirical

phase shifts can introduce significant uncertainties.

In this paper we solve these problems by introducing a new

set of short-range chiral EFT interactions on the lattice with

a simpler decomposition into spin channels. The angular de-

pendence of the relative separation between the two nucleons

is prescribed by spherical harmonics, and the dependence on

the nucleon spins is given by the spin-orbit Clebsch-Gordan

coefficients. The full details of this process are presented

in this paper. We start with some definitions of the lattice

operator notations used. Next we discuss the lattice Hamilto-
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nian used in our lattice transfer matrix formalism. The short-

range interactions are presented first, and we then proceed

to the long-range interactions. We then compare our neutron-

proton scattering results at lattice spacings of 1.97, 1.64, 1.32,

and 0.99 fm with the empirical phase shifts. After this we

compute some observable properties of the deuteron, discuss

theoretical uncertainties, and present a summary and outlook.

Certain interactions such as the Coulomb interaction and some

isospin-breaking interactions are not directly relevant to the

neutron-proton analysis that we consider here. However, we

include these interactions in this work for completeness and

future reference.

II. LATTICE OPERATOR DEFINITIONS

Let us define ai,j (n) and a
†
i,j (n), the lattice annihilation

and creation operators at lattice site n with spin i = 0, 1 (up,

down) and isospin j = 0, 1 (proton, neutron). The operators

a
sNL

i,j (n) and a
sNL†
i,j (n) are defined via nonlocal smearing with

the real parameter sNL,

a
sNL

i,j (n) = ai,j (n) + sNL

∑

|n′|=1

ai,j (n + n′). (1)

a
sNL†
i,j (n) = a

†
i,j (n) + sNL

∑

|n′|=1

a
†
i,j (n + n′). (2)

Next we define the pair annihilation operators

[a(n)a(n′)]sNL

S,Sz,I,Iz
, where

[a(n)a(n′)]sNL

S,Sz,I,Iz

=
∑

i,j,i ′,j ′
a

sNL

i,j (n)Mii ′ (S, Sz)Mjj ′ (I, Iz)a
sNL

i ′,j ′ (n
′) (3)
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with

Mii ′ (0, 0) = 1√
2

[δi,0δi ′,1 − δi,1δi ′,0], (4)

Mii ′ (1, 1) = δi,0δi ′,0, (5)

Mii ′ (1, 0) = 1√
2

[δi,0δi ′,1 + δi,1δi ′,0], (6)

Mii ′ (1,−1) = δi,1δi ′,1. (7)

We define the lattice finite difference operation ∇l on a general

lattice function f (n) as

∇lf (n) = 1
2
f (n + l̂) − 1

2
f (n − l̂), (8)

where l̂ is the spatial lattice unit vector in the l direction. It is

also convenient to define the lattice finite difference operation

∇1/2,l defined on points halfway between lattice sites:

∇1/2,lf (n) = f
(

n + 1
2
l̂
)

− f
(

n − 1
2
l̂
)

. (9)

We use this operation only to define the Laplacian operator,

∇2
1/2 =

∑

l

∇2
1/2,l . (10)

Let us define the solid harmonics

RL,Lz
(r) =

√

4π

2L + 1
rLYL,Lz

(θ, φ) (11)

and their complex conjugates

R∗
L,Lz

(r) =
√

4π

2L + 1
rLY ∗

L,Lz
(θ, φ). (12)

Using the pair annihilation operators, lattice finite differences,

and solid harmonics, we define the operator

P
2M,sNL

S,Sz,L,Lz,I,Iz
(n) =

[

a(n)∇2M
1/2 R∗

L,Lz
(∇ )a(n)

]sNL

S,Sz,I,Iz
, (13)

where ∇2M
1/2 and ∇ act on the second annihilation operator.

More explicitly stated, this means that we act on the n′ in

Eq. (3) and then set n′ to equal n. The even integer 2M

gives us higher powers of the finite differences. Writing the

Clebsch-Gordan coefficients as 〈SSz, LLz|JJz〉, we define

O
2M,sNL

S,L,J,Jz,I,Iz
(n) =

∑

Sz,Lz

〈SSz, LLz|JJz〉P 2M,sNL

S,Sz,L,Lz,I,Iz
(n).

(14)

We also define pointlike density operators that depend on

spin and isospin. For spin indices S = 1, 2, 3, and isospin

indices I = 1, 2, 3, we define

ρ(n) =
∑

i,j

a
†
i,j (n)ai,j (n), (15)

ρS (n) =
∑

i,i ′,j

a
†
i,j (n)[σS]ii ′ai ′,j (n), (16)

ρI (n) =
∑

i,j,j ′

a
†
i,j (n)[τI ]jj ′ai,j ′ (n), (17)

ρS,I (n) =
∑

i,i ′,j,j ′
a
†
i,j (n)[σS]ii ′ ⊗ [τI ]jj ′ai ′,j ′ (n), (18)

where σS are Pauli matrices in spin space and τI are Pauli

matrices in isospin space.

III. LATTICE HAMILTONIAN AND TRANSFER

MATRIX FORMALISM

Let a be the spatial lattice spacing and at be the temporal

lattice spacing. We work in lattice units (l.u.), where all

quantities are multiplied by the powers of the spatial spacing

to form a dimensionless combination. The normal-ordered

transfer matrix is

M =: exp[−Hαt ] :, (19)

where the :: symbols denote normal ordering where the anni-

hilation operators are on the right and creation operators are

on the left. αt = at/a is the ratio between the temporal lattice

spacing and the spacial lattice spacing. For the temporal lattice

spacing, we take at = 1.32 fm for a = 1.97 fm. We rescale at

for other lattice spacings so that a2/at is fixed. We partition

the lattice Hamiltonian H into a free Hamiltonian, short-range

interactions, and long-range interactions,

H = Hfree + V short
2N + V

long

2N . (20)

For the free Hamiltonian we use an O(a4)-improved action of

the form [10]

Hfree = 49

12m

∑

n

a†(n)a(n) − 3

4m

∑

n,i

∑

〈n′ n〉i
a†(n′)a(n)

+ 3

40m

∑

n,i

∑

〈〈n′ n〉〉i
a†(n′)a(n)

− 1

180m

∑

n,i

∑

〈〈〈n′ n〉〉〉i
a†(n′)a(n). (21)

IV. SHORT-RANGE INTERACTIONS

A. Order Q0

At order Q0 we have two short-range interaction operators,

namely, the S-wave spin singlet, which we call V0,1S0
(n),

∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n)

]†
O

0,sNL

0,0,0,0,1,Iz
(n), (22)

and the S-wave spin triplet V0,3S1
(n),

∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n). (23)

We note that since we work with interactions that act with

a specified parity and specified total intrinsic spin S, when

we act on two-nucleon states with a total momentum equal

to 0, the total isospin I is completely constrained by the

requirement of overall antisymmetry of the two nucleons.

However, we still specify the correct total isospin I explicitly

in order to remove lattice artifacts that might otherwise appear

in cases when the total momentum is not 0.

Wigner’s SU(4) symmetry [11] is an approximate sym-

metry of the low-energy nucleon-nucleon interactions, where

the nucleonic spin and isospin degrees of freedom can be
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rotated as four components of an SU(4) multiplet. As in

previous work [7], we treat the SU(4) part of the short-range

interactions separately. This choice allows us to control the

strength of the local part of the SU(4) interaction, which has

been shown to be important for the binding of nucleons in

nuclei [6]. So at leading order we also include an SU(4)-

invariant short-range operator V0 with the form

V0 = C0

2
:
∑

n′,n,n′′

∑

i ′,j ′

a
sNL†
i ′,j ′ (n′)asNL

i ′,j ′ (n
′)fsL

(n′ − n)fsL
(n − n′′)

×
∑

i ′′,j ′′

a
sNL†
i ′′,j ′′ (n

′′)asNL

i ′′,j ′′ (n
′′) :, (24)

where fsL
is defined as

fsL
(n) = 1 for |n| = 0,

= sL for |n| = 1,

= 0 otherwise. (25)

We repeat again that, in terms of counting powers of

momentum, this SU(4) interaction is equivalent to the

SU(4)-invariant interaction we get by adding together

V0,1S0
(n) and V0,3S1

(n). However, the separate treatment

of this interaction allows us to control the strength of the

local part of the SU(4) interaction in systems with more

than a few nucleons. For the purposes of fitting operator

coefficients, we keep the coefficient C0 fixed and tune

the coefficients of V0,1S0
(n) and V0,3S1

(n) as needed to

reproduce the scattering phase shifts and mixing angles.

In this work we take the smearing parameter sNL for

the SU(4) interaction to be the same as that used in the

other short-range interactions. For a = 1.97 fm we take

C0 = −0.175 l.u., sL = 0.070 l.u, and sNL = 0.080 l.u. For

a = 1.64 fm we use C0 = −0.100 l.u., sL = 0.109 l.u,

and sNL = 0.122 l.u. For a = 1.32 fm, we use C0 =
−0.045 l.u., sL = 0.170 l.u, and sNL = 0.186 l.u. For

a = 0.99 fm, we use C0 = −0.015 l.u., sL = 0.265 l.u,

and sNL = 0.283 l.u. In future work, however, we may

consider different smearing parameters for the two cases

in order to accelerate the convergence of the effective field

theory expansion in many-body systems.

B. Order Q2

At order Q2 we have the lowest radial excitations of the

S-wave spin singlet, which we call V2,1S0
(n),

∑

Iz=−1,0,1

[

O
2,sNL

0,0,0,0,1,Iz
(n)

]†
O

0,sNL

0,0,0,0,1,Iz
(n)

+
∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n)

]†
O

2,sNL

0,0,0,0,1,Iz
(n), (26)

and the S-wave spin triplet V2,3S1
(n),

∑

Jz=−1,0,1

[

O
2,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
2,sNL

1,0,1,Jz,0,0(n). (27)

At order Q2 there is the 1P 1 interaction V2,1P 1
(n),

∑

Jz=−1,0,1

[

O
0,sNL

0,1,1,Jz,0,0(n)
]†

O
0,sNL

0,1,1,Jz,0,0(n), (28)

the 3P 0 interaction V2,3P 0
(n),

∑

Iz=−1,0,1

[

O
0,sNL

1,1,0,0,1,Iz
(n)

]†
O

0,sNL

1,1,0,0,1,Iz
(n), (29)

the 3P 1 interaction V2,3P 1
(n),

∑

Iz=−1,0,1

∑

Jz=−1,0,1

[

O
0,sNL

1,1,1,Jz,1,Iz
(n)

]†
O

0,sNL

1,1,1,Jz,1,Iz
(n), (30)

and the 3P 2 interaction V2,3P 2
(n),

∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
0,sNL

1,1,2,Jz,1,Iz
(n)

]†
O

0,sNL

1,1,2,Jz,1,Iz
(n). (31)

At order Q2 we also have the S-D mixing term V2,SD (n),

∑

Jz=−1,0,1

[

O
0,sNL

1,2,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,2,1,Jz,0,0(n). (32)

C. Order Q4

At order Q4 we have the next-to-lowest radial excitations

of the S-wave spin singlet V4,1S0,1
(n),

∑

Iz=−1,0,1

[

O
2,sNL

0,0,0,0,1,Iz
(n)

]†
O

2,sNL

0,0,0,0,1,Iz
(n), (33)

and V4,1S0,2
(n),

∑

Iz=−1,0,1

[

O
4,sNL

0,0,0,0,1,Iz
(n)

]†
O

0,sNL

0,0,0,0,1,Iz
(n)

+
∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n)

]†
O

4,sNL

0,0,0,0,1,Iz
(n), (34)

and the next-to-lowest radial excitations of the S-wave spin

triplet V4,3S1,1
(n),

∑

Jz=−1,0,1

[

O
2,sNL

1,0,1,Jz,0,0(n)
]†

O
2,sNL

1,0,1,Jz,0,0(n), (35)

and V4,3S1,2
(n),

∑

Jz=−1,0,1

[

O
4,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
4,sNL

1,0,1,Jz,0,0(n). (36)

If we apply the on-shell equivalence condition that the magni-

tude of the outgoing relative momentum equals the magnitude

of the incoming relative momentum, then V4,1S0,1
and V4,1S0,2

are equivalent and also V4,3S1,1
and V4,3S1,2

are equivalent. In

this work we make the choice of setting the coefficients of

V4,1S0,2
and V4,3S1,2

to 0.
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At order Q4 we have the first radial excitations of the 1P 1

interaction V4,1P 1
(n),

∑

Jz=−1,0,1

[

O
2,sNL

0,1,1,Jz,0,0(n)
]†

O
0,sNL

0,1,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
0,sNL

0,1,1,Jz,0,0(n)
]†

O
2,sNL

0,1,1,Jz,0,0(n), (37)

the 3P 0 interaction V4,3P 0
(n),

∑

Iz=−1,0,1

[

O
2,sNL

1,1,0,0,1,Iz
(n)

]†
O

0,sNL

1,1,0,0,1,Iz
(n)

+
∑

Iz=−1,0,1

[

O
0,sNL

1,1,0,0,1,Iz
(n)

]†
O

2,sNL

1,1,0,0,1,Iz
(n), (38)

the 3P 1 interaction V4,3P 1
(n),

∑

Iz=−1,0,1

∑

Jz=−1,0,1

[

O
2,sNL

1,1,1,Jz,1,Iz
(n)

]†
O

0,sNL

1,1,1,Jz,1,Iz
(n)

+
∑

Iz=−1,0,1

∑

Jz=−1,0,1

[

O
0,sNL

1,1,1,Jz,1,Iz
(n)

]†
O

2,sNL

1,1,1,Jz,1,Iz
(n),

(39)

and the 3P 2 interaction V4,3P 2
(n),

∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
2,sNL

1,1,2,Jz,1,Iz
(n)

]†
O

0,sNL

1,1,2,Jz,1,Iz
(n)

+
∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
0,sNL

1,1,2,Jz,1,Iz
(n)

]†
O

2,sNL

1,1,2,Jz,1,Iz
(n).

(40)

At order Q4 we also have the first radial excitations of the S-D

mixing term V4,SD,1(n),
∑

Jz=−1,0,1

[

O
2,sNL

1,2,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
2,sNL

1,2,1,Jz,0,0(n), (41)

and V4,SD,2(n),
∑

Jz=−1,0,1

[

O
0,sNL

1,2,1,Jz,0,0(n)
]†

O
2,sNL

1,0,1,Jz,0,0(n)

+
∑

Jz=−1,0,1

[

O
2,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,2,1,Jz,0,0(n). (42)

If we apply the on-shell equivalence condition, then V4,SD,1

and V4,SD,2 are equivalent. In this work we make the choice of

setting the coefficient of V4,SD,1 to 0.

At order Q4 we have the 1D2 interaction V4,1D2
(n),

∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
0,sNL

0,2,2,Jz,1,Iz
(n)

]†
O

0,sNL

0,2,2,Jz,1,Iz
(n), (43)

the 3D1 interaction V4,3D1
(n),

∑

Jz=−1,0,1

[

O
0,sNL

1,2,1,Jz,0,0(n)
]†

O
0,sNL

1,2,1,Jz,0,0(n), (44)

the 3D2 interaction V4,3D2
(n),

∑

Jz=−2,...,2

[

O
0,sNL

1,2,2,Jz,0,0(n)
]†

O
0,sNL

1,2,2,Jz,0,0(n), (45)

and the 3D3 interaction V4,3D3
(n),

∑

Jz=−3,...,3

[

O
0,sNL

1,2,3,Jz,0,0(n)
]†

O
0,sNL

1,2,3,Jz,0,0(n). (46)

At order Q4 we also have the P -F mixing term V4,PF (n),

∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
0,sNL

1,3,2,Jz,0,0(n)
]†

O
0,sNL

1,1,2,Jz,0,0(n)

+
∑

Iz=−1,0,1

∑

Jz=−2,...,2

[

O
0,sNL

1,1,2,Jz,0,0(n)
]†

O
0,sNL

1,3,2,Jz,0,0(n).

(47)

D. Isospin-breaking short-range interactions

We also include additional isospin-breaking 1S0 contact

interactions for proton-proton scattering (Iz = 1) and neutron-

neutron scattering (Iz = −1). These are not relevant for

neutron-proton scattering, but we nevertheless discuss the

interactions for completeness. We define the two isospin-

breaking interactions V
Iz=1

0,1S0
(n),

[

O
0,sNL

0,0,0,0,1,Iz=1(n)
]†

O
0,sNL

0,0,0,0,1,Iz=1(n), (48)

and V
Iz=−1

0,1S0
(n),

[

O
0,sNL

0,0,0,0,1,Iz=−1(n)
]†

O
0,sNL

0,0,0,0,1,Iz=−1(n). (49)

In terms of counting momenta, these are order Q0. However,

they are suppressed by the small size of the isospin-breaking

coefficient. Following our previous analyses, we count this

correction as order Q2. We do not consider higher-order

isospin breaking terms in this work, but they will be included

in future studies.

V. LONG-RANGE INTERACTIONS

A. One-pion exchange

The one-pion exchange interaction VOPE has the form

VOPE = − g2
A

8F 2
π

∑

n′,n,S ′,S,I

: ρS ′,I (n′)fS ′S (n′ − n)ρS,I (n) :,

(50)

where fS ′S is defined as

fS ′S (n′−n)

= 1

L3

∑

q

Q(qS ′ )Q(qS ) exp
[

−iq · (n′−n)−bπ

(

q2+M2
π

)]

q2 + M2
π

,

(51)

where L is the length of the cubic periodic box and each lattice

momentum component qS is an integer multiplied by 2π/L.
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FIG. 1. Dispersion relation of the deuteron. Left: Without any Galilean invariance restoration (GIR). Right: With GIR as provided by the

operator VGIR with coefficient CGIR = −0.0658.

The function Q(qS ) is defined as

Q(qS ) = 3
2

sin(qS ) − 3
10

sin(2qS ) + 1
30

sin(3qS ), (52)

which equals qS up to a correction of order q7
S . The parameter

bπ is included to remove short-distance lattice artifacts in the

one-pion exchange interaction. In the present calculation, we

set bπ = 0.25 in lattice units. We have used the combination

q2 + M2
π in the exponential as suggested in recent work

[12] as a momentum-space regulator that does not affect the

long-distance behavior. At leading order we take the pion

mass to be the mass of the neutral pion, Mπ = M0
π = Mπ,I=3.

B. Two-pion exchange

The cutoff momentum arising from the lattice regulariza-

tion is �latt = π/a, with a the spatial lattice spacing. For

coarse lattice spacings such as a = 1.97 fm and a = 1.64 fm,

the corresponding lattice cutoffs are 314 and 377 MeV,

TABLE I. Low-energy constants determined by N3LO fits using lattice spacings a = 1.97, 1.64, 1.32, and 0.99 fm. For calculations using

a = 1.32 and 0.99 fm, full NN interactions are used. All LECs are given in lattice units.

LEC a = 1.97 fm a = 1.64 fm a = 1.32 fm a = 0.99 fm

C0,1S0
0.1050 ± 0.0006 0.0879 ± 0.0004 0.0833 ± 0.0010 0.0860 ± 0.0004

C0,3S1
0.0256 ± 0.0056 0.0322 ± 0.0031 0.0455 ± 0.0289 0.0520 ± 0.0006

C2,1S0
0.0217 ± 0.0002 0.0242 ± 0.0002 0.0271 ± 0.0007 0.0256 ± 0.0005

C2,3S1
0.0267 ± 0.0020 0.0280 ± 0.0014 0.0310 ± 0.0179 0.0263 ± 0.0005

C2,SD −0.0605 ± 0.0041 −0.0421 ± 0.0047 −0.0291 ± 0.0137 −0.0089 ± 0.0021

C2,1P 1
0.1930 ± 0.0012 0.1758 ± 0.0013 0.1469 ± 0.0003 0.1321 ± 0.0002

C2,3P 0
−0.0084 ± 0.0004 0.0190 ± 0.0007 0.0495 ± 0.0004 0.0940 ± 0.0003

C2,3P 1
0.1332 ± 0.0013 0.1217 ± 0.0007 0.1186 ± 0.0034 0.1300 ± 0.0007

C2,3P 2
0.0441 ± 0.0001 0.0461 ± 0.0018 0.0584 ± 0.0021 0.0665 ± 0.0002

C4,1S0
0.0073 ± 0.0001 0.0081 ± 0.0001 0.0108 ± 0.0005 0.0148 ± 0.0006

C4,3S1
0.0079 ± 0.0007 0.0081 ± 0.0006 0.0119 ± 0.0109 0.0153 ± 0.0004

C4,SD 0.0005 ± 0.0003 −0.0011 ± 0.0006 −0.0026 ± 0.0029 −0.0098 ± 0.0011

C4,1P 1
−0.0004 ± 0.0006 −0.0057 ± 0.0006 −0.0104 ± 0.0001 −0.0105 ± 0.0002

C4,3P 0
−0.0001 ± 0.0002 −0.0006 ± 0.0005 −0.0024 ± 0.0001 −0.0022 ± 0.0007

C4,3P 1
−0.0006 ± 0.0004 −0.0004 ± 0.0004 −0.0019 ± 0.0013 0.0063 ± 0.0013

C4,3P 2
0.0080 ± 0.0002 0.0090 ± 0.0012 0.0105 ± 0.0008 0.0078 ± 0.0003

C4,PF 0.0072 ± 0.0002 0.0041 ± 0.0011 0.0017 ± 0.0002 0.0026 ± 0.0002

C4,1D2
0.0105 ± 0.0006 0.0088 ± 0.0005 0.0136 ± 0.0001 0.0190 ± 0.0050

C4,3D1
0.0327 ± 0.0023 0.0319 ± 0.0039 0.0318 ± 0.0134 0.0720 ± 0.0122

C4,3D2
−0.032 ± 0.0017 −0.0324 ± 0.0019 −0.0187 ± 0.0022 −0.0005 ± 0.0014

C4,3D3
0.0030 ± 0.0026 0.0088 ± 0.0027 0.0059 ± 0.0013 0.0127 ± 0.0041
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FIG. 2. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 1.97 fm is used. The

TPEP is not included explicitly as discussed in the text.

respectively. For momenta lying below these cutoff scales,

the two-pion-exchange potential (TPEP) can be expanded in

powers of q2/(4π2), resulting in operators that are exactly the

same as our short-range contact terms. We conclude that the

TPEP at coarse lattice spacings can be replaced by retuning

the low-energy constants (LECs) for these contact terms [13].

For these two coarse lattice spacings, the TPEP does not have

observable effects but only changes the LECs.

For the two smaller lattice spacings, a = 1.32 fm and a =
0.99 fm, however, higher momenta can be reached and the

structure of the two-pion-exchange potential can be resolved.

In these cases we include the TPEP explicitly. According to

the power counting of chiral EFT, the TPEP first appears at

order O(Q2) or NLO, the subleading TPEP appears at order

O(Q3) or N2LO, and so on [14]. Similarly to what we do to

the one-pion exchange potential, we also regularize the TPEP

by a Gaussian form factor in momentum space,

F (q ) = exp
[

−bπ

(

q2 + M2
π

)]

= exp

[

−q2 + M2
π

�2

]

, (53)

where � = 1/
√

bπ [12]. In the present calculation, we set

bπ = 0.25 l.u., which equates to � = 300 MeV for a =
1.32 fm and � = 400 MeV for a = 0.99 fm. In this work, the

relativistic corrections stemming from the 1/m2
N corrections

to the one-pion exchange potential and 1/mN correction to

the TPEP at order O(Q4) are not taken into account.

The TPEP up to order O(Q4) or N3LO is completely local

and can be written in the form

VTPEP = V
Q2

TPEP + V
Q3

TPEP + V
Q4

TPEP

= 1

2

∑

n,n′
: ρ(n)VC (n − n′)ρ(n′) : +1

2

∑

I

∑

n,,n′
: ρI (n)WC (n − n′)ρI (n′) :

+ 1

2

∑

S

∑

n,n′
: ρS (n)Vσ (n − n′)ρS (n′) : +1

2

∑

S,I

∑

n,n′
: ρS,I (n)Wσ (n − n′)ρS,I (n′) :

+ 1

2

∑

S1,S2

∑

n,n′
: ρS1

(n)(VT )S1,S2
(n − n′)ρS2

(n′) : +1

2

∑

S1,S2,I

∑

n,n′
: ρS1,I (n)(WT )S1,S2

(n − n′)ρS2,I (n′) :, (54)
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FIG. 3. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 1.64 fm is used. The

TPEP is not included explicitly as discussed in the text.

where VC/σ , (VT )S1,S2
, WC/σ , and (WT )S1,S2

are scalar functions in the coordinate space, and

VC/σ (n − n′) = 1

L3

∑

q

exp[−iq · (n − n′)]VC/σ (q)F (q), (55)

WC/σ (n − n′) = 1

L3

∑

q

exp[−iq · (n − n′)]WC/σ (q)F (q), (56)

(VT )S1,S2
(n − n′) = 1

L3

∑

q

exp[−iq · (n − n′)](VT )S1,S2
(q)F (q)Q(qS1

)Q(qS2
), (57)

(WT )S1,S2
(n − n′) = 1

L3

∑

q

exp[−iq · (n − n′)](WT )S1,S2
(q)F (q)Q(qS1

)Q(qS2
). (58)

The definitions for the functions VC/σ (q), (WT )C/σ (q), (VT )S1,S2
(q), and (WT )S1,S2

(q) are given in Refs. [12,15–18].

C. Coulomb and long-range strong isospin breaking

The Coulomb interaction will not be relevant for neutron-proton scattering, but we nevertheless discuss it here for

completeness. The Coulomb interaction can be written as

VCoulomb = −αEM

2

∑

n′,n

:
1

4
[ρ(n′) + ρI=3(n′)]

1

d(n′ − n)
[ρ(n) + ρI=3(n)] :, (59)

where d(n′ − n) is the shortest length of n′-n as measured on the periodic lattice, and we define the value of d at the origin to

be 1/2. Our notation ρI=3 refers to the I = 3 isospin component of ρI .
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FIG. 4. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 1.32 fm and full NN

interactions are used.

The long-range isospin-breaking correction, due to differences in the charged and neutral pion mass in one-pion exchange,

has the form

V IB
OPE = − g2

A

8f 2
π

∑

n′,n,S ′,S,I

: ρS ′,I (n′)f IB
S ′SI (n′ − n)ρS,I (n) :, (60)

where f IB
S ′SI is defined as

f IB
S ′SI (n′−n) = 1

L3

∑

q

Q(qS ′ )Q(qS ) exp
[

−iq · (n′ − n) − bπ

(

q2 + M2
π,I

)]

q2 + M2
π,I

− fS ′S (n′−n), (61)

where Mπ,1 = Mπ,2 = M+
π = M−

π and Mπ,3 = M0
π . As in previous analyses we count this correction as order Q2.

VI. GALILEAN INVARIANCE RESTORATION (GIR)

Galilean invariance is the statement that the laws of New-

tonian physics for a nonrelativistic system are independent

of the velocity of the center of mass. In a lattice regularized

system, however, the effect of the cutoff is different in moving

frames, and this leads to the breaking of Galilean invari-

ance [19]. There is also some breaking of Galilean invariance

caused by the nonlocal smearing parameter sNL that we use in

the construction of our interactions. This arises from the

residual dependence of the interactions on the velocity of the

center of mass. Fortunately, in many cases of interest these

two Galilean invariance breaking effects have the tendency to

partially cancel.

In order to restore Galilean invariance in the two-nucleon

system, we include the two-nucleon nearest-neighbor hopping

operator,

VGIR = V 0
GIR + V 1

GIR, (62)

where

V 0
GIR = CGIR

∑

n,i,j,i ′,j ′
a
†
i,j (n)a

†
i ′,j ′ (n)ai ′,j ′ (n)ai,j (n) (63)
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FIG. 5. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 0.99 fm and full NN

interactions are used.

and

V 1
GIR = − CGIR

6

∑

n,i,j,i ′,j ′

∑

n′

a
†
i,j (n + n′)a†

i ′,j ′ (n + n′)ai ′,j ′ (n)ai,j (n). (64)

Let us write |Ptot〉 as a two-body bound-state wave function with total momentum Ptot. We note that

〈Ptot|V 0
GIR|Ptot〉 (65)

is independent of Ptot, and so we have

〈Ptot|V 0
GIR|Ptot〉 = 〈0|V 0

GIR|0〉, (66)

where |0〉 is the two-body bound-state wave function with zero total momentum. Furthermore,

〈Ptot|V 1
GIR|Ptot〉 = −1

6
〈0|V 0

GIR|0〉
∑

n′
e−iPtot ·	n′ =

[

−1

3
cos(Ptot,1) − 1

3
cos(Ptot,2) − 1

3
cos(Ptot,3)

]

〈0|V 0
GIR|0〉. (67)

Therefore

〈Ptot|VGIR|Ptot〉 =
[

1 − 1
3

cos(Ptot,1) − 1
3

cos(Ptot,2) − 1
3

cos(Ptot,3)
]

〈0|V 0
GIR|0〉. (68)

In this manner we can restore Galilean invariance up to order Q2 by tuning the coefficient of VGIR according to the dispersion

relation of the deuteron and the 1S0 ground state at finite volume. The deuteron dispersion relation is far more useful for this

purpose, however, since the 1S0 ground state is a continuum state that shows negligible Galilean invariance breaking in its

dispersion relation. This is true for all continuum states, and this is why the amount of Galilean invariance breaking seen in the

higher partial waves is also negligible. We will consider Galilean invariance breaking effects beyond order Q2 in future work.

As an example of how to determine the Galilean invariance restoration operator coefficient, we show the results for lattice

spacing a = 1.97 fm in Fig. 1. The left and right panels are the deuteron dispersion relations before and after including the GIR

operator, respectively. We see that the amount of correction is relatively small. The fitted coefficient for VGIR is found to be

CGIR = −0.0658. The amount of Galilean invariance breaking is somewhat smaller than this for the smaller lattice spacings.
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FIG. 6. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 1.32 fm is used. The

TPEP is not included in this case for comparison.

VII. SCATTERING ON THE LATTICE

In order to calculate the scattering phase shifts and mixing

angles, we first construct radial wave functions through the

spherical harmonics with quantum numbers (L,Lz) [20,21],

|r〉L,Lz =
∑

r′
YL,Lz

(r̂ ′)δ|r′|=r |r′〉, (69)

where r′ runs over all lattice grid points having the same radial

lattice distance. We group together data into a large number

of radial bins so that in each bin, r − δr/2 < |r′| < r + δr/2,

with a very small width parameter δr . Using this definition

of the radial wave function, the Hamiltonian matrix over a

three-dimensional lattice can be reduced to a one-dimensional

radial Hamiltonian, Hr,r′ → Hr,r ′ .

We follow the method described in Ref. [20], which uses an

auxiliary radial potential. We extract the phase shifts as well as

the mixing angles from the radial wave functions in the region

where the NN force and auxiliary potentials are vanishing. In

this range, the wave function has the form

ALh−
L (kr ) − BLh+

L (kr ), (70)

where h−
L (kr ) and h+

L (kr ) are the spherical Bessel functions,

k = √
2µE, µ is the reduced mass, and E is the energy. The

scattering coefficients AL and BL satisfy the relations

BL = SLAL, (71)

where SL = exp(2iδL) is the S matrix and δL is the phase

shift. The phase shift is determined by setting

δL = 1

2i
log

(

BL

AL

)

. (72)

In the case of the coupled channels with J > 0, both of

the coupled partial waves, L = J − 1 and L = J + 1, sat-

isfy Eq. (71), and the S matrix couples the two channels

together. Throughout this work we adopt the so-called Stapp

parametrization of the phase shifts and mixing angles for the

coupled channels [22],

S =
[

cos(2ǫ) exp
(

2iδ1J
J−1

)

i sin(2ǫ) exp
(

iδ1J
J−1 + iδ1J

J+1

)

i sin 2ǫ exp
(

iδ1J
J−1 + iδ1J

J+1

)

cos(2ǫ) exp
(

2iδ1J
J+1

)

]

. (73)
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FIG. 7. Neutron-proton scattering phase shifts and mixing angles versus relative momenta. The lattice spacing a = 0.99 fm is used. The

TPEP is not included in this case for comparison.
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TABLE II. Deuteron properties and S-wave parameters calculated with the full NN interaction up to chiral order O(Q4) using a = 0.99 fm.

Errors we list here indicate uncertainties from the fitting procedure only.

LO NLO N2LO N3LO Empirical

Ed (MeV) 2.2246 ± 0.0002 2.224575 ± 0.000016 2.224575 ± 0.000025 2.224575 ± 0.000011 2.224575(9) [24]

As (fm−1/2) 0.8662 ± 0.0007 0.8772 ± 0.0003 0.8777 ± 0.0004 0.8785 ± 0.0004 0.8846(9) [25]

η 0.0212 ± 0.0000 0.0258 ± 0.0001 0.0257 ± 0.0002 0.0254 ± 0.0001 0.0256(4) [26]

Qd (fm2) 0.2134 ± 0.00000 0.2641 ± 0.0016 0.2623 ± 0.0023 0.2597 ± 0.0013 0.2859(3) [27]

rd (fm) 1.9660 ± 0.0001 1.9548 ± 0.0005 1.9555 ± 0.0008 1.9545 ± 0.0005 1.97535(85) [28]

a3S1
5.461 ± 0.000 5.415 ± 0.001 5.421 ± 0.002 5.417 ± 0.001 5.424(4) [29]

r3S1
1.831 ± 0.0003 1.759 ± 0.002 1.760 ± 0.003 1.758 ± 0.002 1.759(5) [29]

a1S0
−23.8 ± 0.1 −23.69 ± 0.05 −23.8 ± 0.2 −23.678 ± 0.038 −23.748(10) [29]

r1S0
2.666 ± 0.001 2.647 ± 0.003 2.69 ± 0.02 2.647 ± 0.004 2.75(5) [29]

PD (%) 1.92 3.48 3.41 3.36

VIII. RESULTS FOR THE NEUTRON-PROTON

PHASE SHIFTS

Different lattice spacings introduce different lattice arti-

facts. We make calculations using four lattice spacings, a =
1.97, 1.64, 1.32, and 0.99 fm to study the lattice spacing

effects. We choose these values because the corresponding

lattice momentum cutoffs, �latt = π/a, remain below the

estimated breakdown scale of chiral effective field theory and

the order-by-order convergence has been demonstrated to be

favorable in few-body and many-body calculations. As noted

in the discussion above, we do not include the TPEP for the

two coarse lattice spacings, a = 1.97 and 1.64 fm. For the two

smaller lattice spacings, a = 1.32 and 0.99 fm, we present

results both with and without the TPEP in order to discern

the effect of the TPEP.

In previous lattice studies we had to contend with interac-

tions that had an effect in all channels. With these new lattice

interactions this problem is now completely solved. We need
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FIG. 9. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 1.97 fm.

Blue and red bands signify the estimated uncertainties at NLO and N3LO, respectively. The black solid line and diamonds denote the phase

shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at N3LO, respectively.
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FIG. 10. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 1.64 fm.

Blue and red bands signify the estimated uncertainties at NLO and N3LO, respectively. The black solid line and diamonds denote the phase

shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at N3LO, respectively.

only to consider the interactions that participate in a given

channel, and our labeling of the operators makes clear which

channels these are. We determine the LECs by reproducing

the neutron-proton scattering phase shifts and mixing angles

of the Nijmegen partial wave-analysis (NPWA) [23]. Since

the NPWA provides only the statistical errors, and not the

systematic errors, we use the procedure described in Ref. [16]

to account for the systematic uncertainties. Specifically, we

use

�X = max
(

�
NPWA
X ,

∣

∣δ
NijmI

X − δNPWA
X

∣

∣,
∣

∣δ
NijmII

X − δNPWA
X

∣

∣,
∣

∣δReid93
X − δNPWA

X

∣

∣

)

, (74)

where δi
X are the phase shifts (mixing angles) in channel X

based on different NPWA potentials, while �
NPWA
X are the

statistical errors of the phase shifts (mixing angles) of the

NPWA.

For the coupled channel, 3S1-3D1, we define the χ2 as

χ2 =
∑

i

(

δLatt
i − δNPWA

i

)2

�
2
i

+
(

ELatt
b − E

Exp

b

)2

�E2
Exp

, (75)

with the deuteron binding energy E
Exp

b = 2.224 575 MeV and

corresponding error �EExp = 9 × 10−6 MeV. For the other

channels, we define χ2 as

χ2 =
∑

i

(

δLatt − δNPWA
i

)2

�
2
i

. (76)

In our fits we choose energy ranges that are appropriate

for the chiral order and lattice spacing used. Specifically, for

the coarser lattice spacings, a = 1.97 and 1.64 fm, we take

the energy range Elab � 50 MeV for the LO, NLO/N2LO,

and N3LO fits. In those cases we use five points, Elab = 1,

5, 10, 25, and 50 MeV, to compute the corresponding χ2.

For the fits with the smaller lattice spacings, a = 1.32 and

0.99 fm, we take the energy range Elab � 50 MeV for the LO,

NLO, and N2LO fits and Elab � 100 MeV for the N3LO fits.

Thus we determine the χ2 for the N3LO fits using six points,

Elab = 1, 5, 10, 25, 50, and 100 MeV. The LECs determined

by the N3LO fits are listed in Table I for each of the lattice

spacings.

In Fig. 2 we show the phase shifts and mixing angles

versus the relative momenta calculated using the coarsest

lattice spacings, a = 1.97 fm. We plot the results for relative

momenta up to prel = 200 MeV. The error bars we quote in

this plot and in the following plots indicate uncertainties from

the fitting procedure only. A more comprehensive analysis

044002-13
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FIG. 11. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 1.32 fm

with the full NN interaction. Blue, green, and red bands signify the estimated uncertainties at NLO, N2LO, and N3LO, respectively. The black

solid line and diamonds denote the phase shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at

N3LO, respectively.

that includes systematic errors due to the truncated chiral

EFT expansion is presented later in our discussion. From

the results, it is clear that with the new lattice operators the

N3LO calculations reproduce the NPWA phase shifts and

mixing angles for most of the S, P , and D waves with a

good accuracy for relative momenta less than 200 MeV. One

can also see clearly that the agreement improves with chiral

order. Unfortunately, the mixing angle ǫ2 bends up for the

relative momenta prel at around 150 MeV, which indicates that

higher-order corrections, e.g., N4LO terms, or smaller lattice

spacings would be needed to get the proper behavior for ǫ2 at

higher momenta.

In Fig. 3 we show the neutron-proton scattering phase

shifts and mixing angles versus the relative momenta cal-

culated using lattice spacing a = 1.64 fm. The results are

very similar to those at a = 1.97 fm, but the mixing angle

ǫ2 stays accurate up to higher momenta compared with that

at a = 1.97 fm. The smaller errors for the channels 3P 2 and

ǫ2 indicate that the results at a = 1.64 fm have smaller lattice

artifacts than those at a = 1.97 fm, as one might expect.

For calculations involving the two smaller lattice spacings,

a = 1.32 and 0.99 fm, we use the full NN interactions up to

chiral order O(Q4) or N3LO. The results are presented in

Figs. 4 and 5, respectively. We plot the results for relative

momenta up to prel = 250 MeV. Compared to the results us-

ing the larger lattice spacings, one can see clear improvement.

Again, good convergence is observed with increasing chiral

order. With the full NN interactions up to order O(Q4), the

calculation using a = 0.99 fm can describe the S, P , and D

waves with a good accuracy over the whole momentum range,

0 < prel < 250 MeV.

To study the importance of the long-range part of the

TPEP in the calculations, we also redo the same fits without

the TPEP for a = 1.32 fm and a = 0.99 fm. Our results are

shown in Figs. 6 and 7. For the calculations using a = 1.32 fm

and a = 0.99 fm, the phase shifts and mixing angles without

the TPEP are very similar to those with the TPEP, though

the LECs are quite different. This indicates that the TPEP

can be emulated by a retuning of the LECs. At the rather

low scattering energies we probe, we do not see a clear

improvement due to the TPEP from the phase shifts and

mixing angles. However, we do expect that this will change

at higher scattering energies.

IX. PROPERTIES OF THE DEUTERON

In this section, we calculate the properties of the deuteron

using the radial deuteron wave function obtained in the
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FIG. 12. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 0.99 fm

with the full NN interaction. Blue, green, and red bands signify the estimated uncertainties at NLO, N2LO, and N3LO, respectively. The black

solid line and diamonds denote the phase shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at

N3LO, respectively.

calculations with a = 0.99 fm and the full NN interactions up

to order Q4 or N3LO. At distance r beyond the range of the

interaction, the radial wave function for the deuteron in the 3S1

channel behaves as

u(r ) = ASe
−γ r , (77)

where AS is the S-wave asymptotic normalization coefficient.

Here γ = √
m|Ed |, with Ed denoting the deuteron binding

energy. In the 3D1 channel, the radial wave function behaves

as

w(r ) = ηAS

[

1 + 3

γ r
+ 3

(γ r )2

]

e−γ r . (78)

In Fig. 8, we show the radial wave functions of the deuteron

calculated using a = 0.99 fm with the full NN interaction up

to chiral order O(Q4). The left panel shows the S-wave radial

wave function while the right panel is for the D-wave radial

wave function. In calculating the asymptotic normalization

factors, we take the range 8 < r < 14 fm. From the plots,

one can see clearly that when the neutron and proton are well

separated the S and D waves behave as the asymptotic forms

in Eqs. (77) and (78), respectively. The numerical values for

AS and η are listed in Table II.

Using the radial wave functions, we can compute the root-

mean-square radius of the deuteron,

rd = 1

2

[

∑

δrr2[u2(r ) + w2(r )]
]1/2

, (79)

where δr is the small separation between the radial bins

we are using for the radial deuteron wave function, and the

summation is over all the radial bins. In the same manner, we

can also compute the quadrupole moment of the deuteron,

Qd = 1

20

∑

δrr2w(r )[
√

8u(r ) − w(r )]. (80)

In addition to the deuteron properties, we can also compute

the S-wave effective range parameters at very low energies.

The effective range expansion has the form

p cot(δ) = −1

a
+ 1

2
rp2 + O(p4), (81)

where p is the relative momenta between the neutron and the

proton, while a and r are the scattering length and effective

range, respectively. Using these formula, we can extract the

scattering length and effective range for 3S1 and 1S0.

In Table II, we present the properties of the deuteron and

S-wave parameters obtained using the a = 0.99 fm and the
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FIG. 13. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 1.32 fm

without the TPEP. Blue and red bands signify the estimated uncertainties at NLO and N3LO, respectively. The black solid line and diamonds

denote the phase shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at N3LO, respectively.

full NN interactions up to order Q4. In order to provide some

insight into the nature of the lattice wave functions, we also

list the computed D-wave probabilities of the deuteron, PD .

We note, however, that PD is strongly dependent on short-

distance physics and the scale at which it is regulated [30].

From the results in Table II, it is clear that the deuteron

properties can be reproduced accurately at lattice spacing

a = 0.99 fm. There are, however, still some small systematic

discrepancies that suggest additional corrections are needed.

While these could be due to corrections beyond N3LO in

the lattice Hamiltonian, they could also be due to missing

corrections to the observables themselves such as the r2

operator. Such corrections are needed to cancel ambiguities

on how the operators are defined on a discrete lattice. For

example, the nucleons could be regarded as exactly localized

as delta functions at the lattice sites or they could be viewed

as having some other distribution with a width comparable to

the lattice spacing. While numerically small, these corrections

to the operator observables are required for a full accounting

of all lattice and regularization artifacts. See, for example,

Ref. [31]. This is an interesting but extensive subject that

requires further investigation in future studies.

X. THEORETICAL UNCERTAINTIES

It is necessary also to address the convergence of the

effective field theory expansion on the lattice and their associ-

ated systematic errors. These important topics have generated

much recent interest [16,32–34]. We follow the prescription

in Refs. [16,32], where the theoretical uncertainty for some

observable X(p) at order NmLO and momentum p is given

by

�XNmLO(p) = max(Qm+2|XLO(p)|,Qm|XLO(p)

− XNLO(p)|, . . . ,Q1|XNm−1LO(p)

− XNmLO(p)|). (82)

Here Q is the estimated expansion parameter controlling the

rate of convergence,

Q = max(p/�b,Mπ/�b ), (83)

and �b the breakdown momentum scale. On the lattice, cubic

symmetry replaces the rotational symmetry of the continuum,

and the (2L + 1)-dimensional irreducible representation of

044002-16



NEUTRON-PROTON SCATTERING WITH LATTICE CHIRAL … PHYSICAL REVIEW C 98, 044002 (2018)

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

δ
(1

S
0
) 

[d
e

g
re

e
s
]

prel  [MeV]

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200  250

δ
(3

S
1
) 

[d
e

g
re

e
s
]

prel  [MeV]

Error(NLO)
Error(N3LO)

NPWA
Lattice (N3LO)

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250

ε 1
  

[d
e

g
re

e
s
]

prel  [MeV]

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250

ε 2
  

[d
e

g
re

e
s
]

prel  [MeV]

-40

-30

-20

-10

 0

 10

 20

 0  50  100  150  200  250

δ
(1

P
1
) 

[d
e

g
re

e
s
]

prel  [MeV]

 0

 5

 10

 15

 20

 0  50  100  150  200  250

δ
(3

P
0
) 

[d
e

g
re

e
s
]

prel [MeV]

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0  50  100  150  200  250

δ
(3

P
1
) 

[d
e

g
re

e
s
]

prel [MeV]

 0

 5

 10

 15

 20

 0  50  100  150  200  250

δ
(3

P
2
) 

[d
e

g
re

e
s
]

prel [MeV]

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250

δ
(1

D
2
) 

[d
e
g
re

e
s
]

prel [MeV]

-20

-15

-10

-5

 0

 5

 0  50  100  150  200  250

δ
(3

D
1
) 

 [
d

e
g

re
e

s
]

prel  [MeV]

 0

 5

 10

 15

 20

 0  50  100  150  200  250

δ
(3

D
2
) 

 [
d

e
g

re
e

s
]

prel  [MeV]

-2

-1

 0

 1

 2

 3

 4

 0  50  100  150  200  250

δ
(3

D
3
) 

 [
d

e
g

re
e

s
]

prel  [MeV]

FIG. 14. Theoretical error bands for neutron-proton scattering phase shifts and mixing angles versus relative momenta for a = 0.99 fm

without the TPEP. Blue and red bands signify the estimated uncertainties at NLO and N3LO, respectively. The black solid line and diamonds

denote the phase shift or mixing angle from the Nijmegen partial-wave analysis (NPWA) and lattice calculation at N3LO, respectively.

SO(3) decomposes into irreducible representations of the

rotational octahedral group O. For example, L = 0 corre-

sponds to the A1 of O, and L = 1 corresponds to the T1 of

O. However, L = 2 splits into the E and T2 representations

of O, and similar splittings occur in all of the larger L

representations. As a result the breaking of rotational sym-

metry for L � 2 is numerically larger than that for L < 2.

This leads to a lower momentum breakdown scale for D

waves and above compared to S and P waves. To account

for this in our calculations, we take �b to be the lattice

momentum cutoff �latt = π/a for the lower partial waves, and

we take �b = (2/3)�latt for ǫ2, D waves, and higher partial

waves.

We will study the dependence of the lattice breakdown

scale on L and J in more detail in future work. The the-

oretical error bands for the neutron-proton scattering phase

shifts and mixing angles versus the relative momenta for

a = 1.97, 1.64, 1.32, and 0.99 fm are shown in Figs. 9–12,

in which we see a systematic decrease in the uncertainties

for the S- and D-wave phase shifts with decreasing lattice

spacing. The unexpectedly small NLO uncertainties for the
3P 0 phase shifts at a coarse lattice spacing are caused by the

rather good but accidental accuracy of the 3P 0 phase shifts at

LO. We also show the estimated theoretical uncertainties for

the neutron-proton scattering phase shifts and mixing angles

for a = 1.32 and 0.99 fm without the long-range TPEP in

Figs. 13 and 14. With only a few exceptions, the error bands

for each order generally overlap with each other and cover

the empirical phase shifts. This is a promising sign of con-

vergence of the chiral effective field theory expansion on the

lattice.

XI. SUMMARY AND OUTLOOK

We have proposed a new lattice formulation of the chiral

NN force which is easily decomposed into partial waves.

The new lattice operators work as projection operators, which

only survive in particular channels. This advantage greatly

simplifies the fitting procedure. Instead of fitting the phase

shifts and mixing angles for all the channels simultaneously,

only one uncoupled channel or two coupled channels are

needed to be computed for each calculation.

To study the dependence on the lattice spacing, we have

computed neutron-proton phase shifts and mixing angles us-

ing four lattice spacings, a = 1.97, 1.64, 1.32, and 0.99 fm.

For two coarser lattice spacings, a = 1.97 or 1.64 fm, we did

not explicitly include the TPEP, whereas for those using a =
1.32 or 0.99 fm, we did. Our numerical results indicate a good

convergence with respect to chiral order. One also observes an

obvious improvement when the lattice spacing is decreased.

044002-17



LI, ELHATISARI, EPELBAUM, LEE, LU, AND MEIßNER PHYSICAL REVIEW C 98, 044002 (2018)

Comparing the results obtained with and without the TPEP

at lattice spacings of a = 1.32 and 0.99 fm, we did not find

significant differences. This may, however, be a consequence

of the rather low scattering energies we probe, and we expect

that differences would appear at higher scattering energies.

We have also studied the properties of the deuteron wave

function and the S-wave effective range parameters obtained

with the full NN interaction at lattice spacing a = 0.99 fm.

The numerical values are very close to the empirical values,

which indicates that the current version of NN interactions

is quite accurate and a very significant improvement over

previous lattice studies. Some small discrepancies remain, but

these may well be fixed in studies that reach a higher order in

the chiral effective field theory expansion.

In summary, the new lattice interactions are far more effi-

cient and accurate in reproducing physical data than previous

lattice interactions. We have begun studying the properties of

light- and medium-mass nuclei using these interactions, and

the results are promising. These interactions were specifically

designed to facilitate very efficient Monte Carlo simulations

of few- and many-body systems using auxiliary fields. The

results of these studies using these new interactions will be

reported in several future publications.
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