000858791 001__ 858791
000858791 005__ 20240610120404.0
000858791 0247_ $$2doi$$a10.1021/jacs.8b01742
000858791 0247_ $$2ISSN$$a0002-7863
000858791 0247_ $$2ISSN$$a1520-5126
000858791 0247_ $$2ISSN$$a1943-2984
000858791 0247_ $$2pmid$$apmid:29482317
000858791 0247_ $$2WOS$$aWOS:000428356000049
000858791 0247_ $$2altmetric$$aaltmetric:47128566
000858791 037__ $$aFZJ-2018-07631
000858791 041__ $$aEnglish
000858791 082__ $$a540
000858791 1001_ $$0P:(DE-HGF)0$$aAn, Jinghua$$b0
000858791 245__ $$aAcid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair
000858791 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000858791 3367_ $$2DRIVER$$aarticle
000858791 3367_ $$2DataCite$$aOutput Types/Journal article
000858791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545232407_18403
000858791 3367_ $$2BibTeX$$aARTICLE
000858791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858791 3367_ $$00$$2EndNote$$aJournal Article
000858791 520__ $$aThe interface of metal-oxide plays pivotal roles in catalytic reactions, but its catalytic function is still not clear. In this study, we report the high activity of nanostructured Ru/ceria (Ru-clusters/ceria) in the ethylene methoxycarbonylation (EMC) reaction in the absence of acid promoter. The catalyst offers 92% yield of MP with TOF of 8666 h–1, which is about 2.5 times of homogeneous Pd catalyst (∼3500 h–1). The interfacial Lewis acid–base pair [Ru-O-Ce-Vö], which consists of acidic Ce-Vö (oxygen vacancy) site and basic interfacial oxygen of Ru-O-Ce linkage, acts as active site for the dissociation of methanol and the subsequent transfer of hydrogen to the activated ethylene, which is the key step in acid-promoter-free EMC reaction. The combination of 1H MAS NMR, pyridine-IR and DFT calculations reveals the hydrogen species derived from methanol contains Brönsted acidity. The EMC reaction mechanism under acid-promoter-free condition over Ru-clusters/ceria catalyst is discussed.
000858791 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000858791 588__ $$aDataset connected to CrossRef
000858791 7001_ $$0P:(DE-HGF)0$$aWang, Yehong$$b1
000858791 7001_ $$00000-0003-3280-6466$$aLu, Jianmin$$b2
000858791 7001_ $$0P:(DE-HGF)0$$aZhang, Jian$$b3
000858791 7001_ $$00000-0003-1321-5273$$aZhang, Zhixin$$b4
000858791 7001_ $$0P:(DE-HGF)0$$aXu, Shutao$$b5
000858791 7001_ $$00000-0003-2694-2306$$aLiu, Xiaoyan$$b6
000858791 7001_ $$0P:(DE-HGF)0$$aZhang, Tao$$b7
000858791 7001_ $$0P:(DE-Juel1)161464$$aGocyla, Martin$$b8
000858791 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b9
000858791 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b10
000858791 7001_ $$00000-0003-1082-9157$$aFornasiero, Paolo$$b11
000858791 7001_ $$00000-0002-9167-8743$$aWang, Feng$$b12$$eCorresponding author
000858791 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.8b01742$$gVol. 140, no. 11, p. 4172 - 4181$$n11$$p4172 - 4181$$tJournal of the American Chemical Society$$v140$$x1520-5126$$y2018
000858791 8564_ $$uhttps://juser.fz-juelich.de/record/858791/files/jacs.8b01742.pdf$$yRestricted
000858791 8564_ $$uhttps://juser.fz-juelich.de/record/858791/files/jacs.8b01742.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858791 909CO $$ooai:juser.fz-juelich.de:858791$$pVDB
000858791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b9$$kFZJ
000858791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000858791 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000858791 9141_ $$y2018
000858791 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858791 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2017
000858791 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858791 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858791 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858791 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858791 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858791 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858791 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858791 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858791 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858791 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858791 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858791 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858791 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2017
000858791 920__ $$lyes
000858791 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000858791 980__ $$ajournal
000858791 980__ $$aVDB
000858791 980__ $$aI:(DE-Juel1)PGI-5-20110106
000858791 980__ $$aUNRESTRICTED
000858791 981__ $$aI:(DE-Juel1)ER-C-1-20170209