000858797 001__ 858797
000858797 005__ 20240610120405.0
000858797 0247_ $$2doi$$a10.1021/acsnano.7b09202
000858797 0247_ $$2ISSN$$a1936-0851
000858797 0247_ $$2ISSN$$a1936-086X
000858797 0247_ $$2pmid$$apmid:29799722
000858797 0247_ $$2WOS$$aWOS:000436910200025
000858797 037__ $$aFZJ-2018-07637
000858797 082__ $$a540
000858797 1001_ $$0P:(DE-Juel1)161464$$aGocyla, Martin$$b0
000858797 245__ $$aShape Stability of Octahedral PtNi Nanocatalysts for Electrochemical Oxygen Reduction Reaction Studied by in situ Transmission Electron Microscopy
000858797 260__ $$aWashington, DC$$bSoc.$$c2018
000858797 3367_ $$2DRIVER$$aarticle
000858797 3367_ $$2DataCite$$aOutput Types/Journal article
000858797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545233114_15563
000858797 3367_ $$2BibTeX$$aARTICLE
000858797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858797 3367_ $$00$$2EndNote$$aJournal Article
000858797 520__ $$aOctahedral faceted nanoparticles are highly attractive fuel cell catalysts as a result of their activity for the oxygen reduction reaction (ORR). However, their surface compositional and morphological stability currently limits their long-term performance in real membrane electrode assemblies. Here, we perform in situ heating of compositionally segregated PtNi1.5 octahedral nanoparticles inside a transmission electron microscope, in order to study their compositional and morphological changes. The starting PtNi1.5 octahedra have Pt-rich edges and concave Ni-rich {111} facets. We reveal a morphological evolution sequence, which involves transformation from concave octahedra to particles with atomically flat {100} and {111} facets, ideally representing truncated octahedra or cuboctahedra. The flat {100} and {111} facets are thought to comprise a thin Pt layer with a Ni-rich subsurface, which may boost catalytic activity. However, the transformation to truncated octahedra/cuboctahedra also decreases the area of the highly active {111} facets. The morphological and surface compositional evolution, therefore, results in a compromise between catalytic activity and morphological stability. Our findings are important for the design of more stable faceted PtNi nanoparticles with high activities for the ORR.
000858797 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000858797 588__ $$aDataset connected to CrossRef
000858797 7001_ $$0P:(DE-HGF)0$$aKuehl, Stefanie$$b1
000858797 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b2
000858797 7001_ $$0P:(DE-HGF)0$$aHeyen, Henner$$b3
000858797 7001_ $$0P:(DE-HGF)0$$aSelve, Soeren$$b4
000858797 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5
000858797 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b6$$eCorresponding author
000858797 7001_ $$00000-0002-3884-436X$$aStrasser, Peter$$b7
000858797 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.7b09202$$gVol. 12, no. 6, p. 5306 - 5311$$n6$$p5306 - 5311$$tACS nano$$v12$$x1936-086X$$y2018
000858797 8564_ $$uhttps://juser.fz-juelich.de/record/858797/files/acsnano.7b09202.pdf$$yRestricted
000858797 8564_ $$uhttps://juser.fz-juelich.de/record/858797/files/acsnano.7b09202.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858797 909CO $$ooai:juser.fz-juelich.de:858797$$pVDB
000858797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b2$$kFZJ
000858797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000858797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b6$$kFZJ
000858797 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000858797 9141_ $$y2018
000858797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2017
000858797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858797 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858797 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858797 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858797 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858797 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2017
000858797 920__ $$lyes
000858797 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000858797 980__ $$ajournal
000858797 980__ $$aVDB
000858797 980__ $$aI:(DE-Juel1)PGI-5-20110106
000858797 980__ $$aUNRESTRICTED
000858797 981__ $$aI:(DE-Juel1)ER-C-1-20170209