TY - JOUR
AU - Burrows, M.
AU - Elster, Ch.
AU - Popa, G.
AU - Launey, K. D.
AU - Nogga, A.
AU - Maris, P.
TI - Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory
JO - Physical review / C
VL - 97
IS - 2
SN - 2469-9985
CY - Woodbury, NY
PB - Inst.
M1 - FZJ-2018-07640
SP - 024325
PY - 2018
AB - Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available.Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities.Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space.Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000425604200002
DO - DOI:10.1103/PhysRevC.97.024325
UR - https://juser.fz-juelich.de/record/858800
ER -