

Probing microstructural origin of complex flow behavior

Pavlik Lettinga

UCSB, 2nd February 2018

Complex flow: high inertia

Ideal Newtonian fluids

Non-linear Newton: shear thinning fluids

Flow instabilities: shear banding

 ε $\dot{\gamma}_2$ $\dot{\gamma}_1$

Possible shear thinners

Living gels:

Sprakel et al, Soft Matter, 4, (2008) 1696

Living polymers:

M. P. Lettinga and S. Manneville, Phys. Rev. Lett., 103 2009

Van der Gucht et al Phys. Rev. Lett., 97, (2006) 108301

Stiff Polymers:

Rods:

Main questions:

Molecular origin of shear band formation:

Can polymer shear band? Can rods shear band?

• Always shear banding for given *m*, or is it system dependent?

Can we tune shear band formation?

Contents: Tune stiffness, length and interaction

- Pb-Peo worm-like micelles:

- DNA

- F-actin:

- Filamentous viruses:

Rods:

Smoluchowski theory for hard rods

Gives equation of motion for the orientational tensor S:

$$\frac{d}{dt}\mathbf{S} = -6D_r \left\{ \mathbf{S} - \frac{1}{3}\hat{\mathbf{I}} + \frac{L}{D}\varphi \left(\mathbf{S}^{(4)} : \mathbf{S} - \mathbf{S} \cdot \mathbf{S} \right) \right\} + \dot{\gamma} \left\{ \hat{\boldsymbol{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\boldsymbol{\Gamma}}^T - 2\mathbf{S}^{(4)} : \hat{\mathbf{E}} \right\}$$

Link with macroscopic stress

$$\Sigma_D = 2\eta_0 \dot{\gamma} \left[\hat{\mathbf{E}} + \frac{(L/D)^2}{3 \ln\{L/D\}} \varphi \times \left\{ \hat{\mathbf{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\mathbf{\Gamma}}^{\mathrm{T}} - \mathbf{S}^{(4)} : \hat{\mathbf{E}} - \frac{1}{3} \hat{\mathbf{I}} \mathbf{S} : \hat{\mathbf{E}} - \frac{1}{\dot{\gamma}} \frac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} \right\} \right]$$

Collective slowing down: Dynamic definition spinodal point

$$D_R^{eff} = D_R^0 \left(1 - \frac{1}{4} \frac{L}{d_{eff}} \varphi \right) \xrightarrow{} \Omega_{eff} = \omega / D_R^{eff}$$

$$\longrightarrow Pe_{eff} = \dot{\gamma}_0 / D_R^{eff}$$

$$D_R^0 : \text{rotational at infinite dilution}$$

Topological slowing down:

Dois phenomenological rotational diffusion coefficient

$$D_{\rm r} = cD_{\rm r}^0(\nu L^3)^{-2}$$

Monotonic constitutive theory for polymeric liquids

Competition of shear flow with Rouse and reputation time non-monotonic behavior due to concentration coupling

Cromer et al, Phys. Fluids, 2013

Experimental input needed:

Information needed:

- Probe the mechanical response of the system.
- Probe the stability of the flow.
- Probe structure *in situ* over broad range of length-scales and time-scales.

Probe the stability of flow with

Laser Doppler Velocimetry

Analyse velocity profiles

Account for curvature cell:

Shear banding with interface:

Wall slip:

DNA, the tuneable polymer part I

<L> \approx 20 μ m, d=7 nm, l_p =50 nm

Tune repulsion by adding salt:

concentration: 0.7 mg/ml

Tuning by addition of salt

- Bands disappear at equal thinning m_{fc}
- Birefringence disappears along with the bands

Tuning by addition of salt

• Bands disappear via widening of the interface

Some conclusions I

- How strong is strong?
- Always shear banding for given *m*, or is it system dependent?

Depends on system

- Suppression shear banding via widening interface, BUT: broad shear banding can exist with broad interface
- Can we tune shear band formation?

Yes, a bit

Also seen for Xanthan, with $m_{fc} = 0.21$ Tang et al, Soft Matter 2018

• New question: Is it charge or stiffness?

KU LEUVEN

Neutral Rods close to I-N:

Giant PB-PEO wormlike micelles

Lonetti, Konibrecher, Lettinga, J. Phys. Cond. Matt., 2008

t-SANS to probe segment ordering dynamics

$$\langle P_2(t) \rangle = \frac{\int d\vartheta \sin(\vartheta) f(\vartheta) P_2(\vartheta)}{\int d\vartheta \sin(\vartheta) f(\vartheta)}$$

Orientational distribution function

$$I(t_i, \vec{q}) = \sum_{n}^{Ncycle} I(t_i + n\Delta t, \vec{q})$$

$$f(\theta)$$

 θ [rad.]

Micro

&

Macro

Scaling frequency:

$$\Omega_{eff} = \omega / D_R^{eff}$$

$$D_R^{eff} = D_R (1 - \varphi / \varphi_{IN})$$

$$D_R = 0.04 \ s^{-1} << D_R^0$$

$$\frac{L}{d_{eff}} \varphi_{IN} = 3.0$$

Some conclusions II

• Is it charge or stiffness? STIFFNESS

Suggestion:

Stiff systems don't collapse once disentangled

- New question: Can we force collapse?
- New question: Can we have a better look?

DNA, the tuneable polymer part II

Tune attraction by adding T-sensitive brush (PNIPAm)

Tuning by increasing attraction

Tuning by increasing attraction

- 20
- **^** 30
- **•** 35
- **4** 40
- 45
- **5**0

Diagram of states

- Attraction suppresses shear band formation (and orientation)
- Re-entrant behavior in two directions

Some conclusions III

How strong is strong?

• Always shear banding for given *m*, or is it system dependent?

Depends on system

• Is it charge or stiffness?

STIFFNESS

• Suppression shear banding via widening interface, BUT: broad shear banding can exist with broad interface

• Can we tune shear band formation?

YES

• New question: Can we have a better look?

F-actin: stiffer and longer

 $< L> \approx 20 \ \mu \text{m}, d=7 \ \text{nm}, l_p=17 \ \mu \text{m}$

Shear banding has been identified by

Kunita et al, PRL 109, 248303 (2012)

Goal: obtain 3-D structural information

Rheological response of F-actin dispersions

0.15 mg/ml100 0.02 mg/ml η [mPa.s] 0.1 0.2 0.3 $\dot{\gamma} [s^{\text{-}1}]$

Strain softening

Shear thinning

In situ confocal microscopy on entangled F-actin

- ➤ Use three concentrations, label 1 per 100 filaments
- ➤ About 100 analyzed filaments per combination

Sheared F-Actin in 3-D

Analyze local bending and stretching:

$$\hat{T}_{j} \equiv \frac{\dot{\mathbf{r}}_{j}}{|\dot{\mathbf{r}}_{j}|}; \hat{B}_{j} \equiv \frac{\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}}{|\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}|}; \kappa_{j} = \frac{|\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}|}{|\dot{\mathbf{r}}_{j}|^{3}}$$

Distribution of angles

Stretched: IV

Bent: III

$$f(\theta,\phi) = a / \left(\left(\frac{\theta - \Delta\theta}{w_{\theta}} \right)^2 + \left(\frac{\phi - \Delta\phi}{w_{\phi}} \right)^2 + 1 \right)$$

Some conclusions IV

How strong is strong?

• Always shear banding for given *m*, or is it system dependent?

Depends on system

• Can we tune shear band formation?

YES

• Is it charge or stiffness?

STIFFNESS

• Suppression shear banding via widening interface

- Long stiff filaments form ordered hair pins
- So what about real rods?

Stiff and mono-disperse rods

Materials Bio-Engineered Phage Systems (varying morphology)

d=6.6 nm, but effective thickness depends on ionic strength

system	L [µm]	L _p [µm]
fd wild type	0.88	2.8
fd Y21M	0.91	9.9
Pf1	1.96	2.8
M13k07	1.2	2.8

Shear thinning rods

Scale viscosity

Assumption: shear thinning is caused by orientation

Zero shear viscosity of rods

$$D_r = cD_r^0(\nu L^3)^{-2}$$
 = c=3.10³

Velocity profiles of rods

Velocity profile of M13k07 (L=1.2 μ m, L_p=2.2 μ m):

very long and flexible rods show hints of shear banding

Zero shear viscosity of rods

JÜLICH FORSCHUNGSZENTRUM

Shear-banding and hairpin formation

• biaxiality reverses in a small shear rate range after "shear banding"

Lang et al, *Polymers*, 2016

Final conclusion

• Always shear banding for given *m*, or is it system dependent?

Depends on system

• Can we tune shear band formation?

YES

• How strong is strong?

 $m_{fc} < 0.25$

• Suppression shear banding via widening interface, BUT: broad shear banding can exist with broad interface

Suggestions:

- Shear banding is suppressed when chain collapses after disentanglement
- Collapse affects the shear-curvature viscosity
- Shear banding is suppressed when system is not long enough

Acknowledgements

FZ Jülich:

Chris Lang
Inka Kirchenbüchler
Manolis Stiakakis
Hu Tang
Lutz Willner
Barbara Lonetti

University of Urbain-Illinois: Simon Rogers

PSI, Villigen:
Joachim Kohlbrecher

ILL, Grenoble: Lionel Porcar

Amolf Amsterdam:
Gijsje Koenderink

Conclusions and Outlook

We find the connection between ordering and stress for *semi-flexible polymers* to *stiff rods*:

> Shear induced biaxial alignment of stiff segments

But:

- ➤ big flaws in theory for sheared rods, no non-linear theory for sheared semi-flexible polymers
- ➤ no good handle on set flow instability

So:

- ➤ Improve theory
- ➤ Develop new systems:
 - Controlled polydispersity
 - Controlled friction with grafted DNA
 - Use labeled living stiff supra-molecular polymers

Advancements: pcf

Nonlinear viscosity and ordering of the ideal rod

Obtain the I-N spinodal point

 $\frac{L}{d_{eff}}\varphi_{IN} = 4.2$ Scale shear rate: $Pe_{eff} = \dot{\gamma}_0/D_R^{eff}$

- works
- different ordering in different directions: Biaxiality!

Scattering in 3-D of actual rods

Biaxiality

- Collective scaling works
- But no good handle on topological effect and biaxiality.

Scaling other ordering parameters

• Strong dependence at low shear rate; weak dependence at high shear rate

Dynamic response fd virus in isotropic

phase
$$f = 0.01$$
 Hz

$$\dot{\gamma}_0 = 3.2 \, s^{-1}$$

$$\dot{\gamma}_0 = 12.8 \, s^{-1}$$

$$\dot{\gamma}_0 = 102 \ s^{-1}$$

Push and pull experiments

Stiff: $\mathbf{R}_{\mathbf{e}-\mathbf{e}} \approx L_c$

End-to-end vector $\mathbf{R}_{\mathbf{e}-\mathbf{e}}$ is the relevant parameter

Semi-flexible:

 $\mathbf{R}_{\mathbf{e}-\mathbf{e}} < L_{c}$

Flexible:

 $\mathbf{R}_{\mathbf{e}-\mathbf{e}} << \mathcal{L}_{c}$

Assembly dynamics of microtubules at molecular resolution Kerssemakers et al, Nature, 442 (2006)

Entropic elasticity of λ -DNA Bustamante, Science 265(1994)

Introduction

Scaling the effective Peclet number by an apparent rotational diffusion coefficient (MPC calculation):

- effective Peclet number:
- at the I-N transition: $Pe_{eff} = \dot{\gamma}/D_r^{coll}$ (lower spinodal point)
- Smoluchowski theory: $\phi_{IN} \Rightarrow D_r^{coll} \equiv 0$

$$\frac{\partial}{\partial t} \delta S = -6D_r^{coll} \delta S$$

 $D_r^{coll} = D_r^0 \left(\frac{L}{d} - \frac{L}{5d} \phi \right)$ (depending on U between 4 and 5)

MPC:

$$D_r^{coll} = D_r^0 A \left(\frac{L}{d_{eff}} \phi_{IN} - \frac{L}{d_{eff}} \phi \right)^{\nu}$$

Tao et al., *J. Chem Phys.*, 2006

measurement

$$\phi_{IN} = 4.2$$

Introduction

Motivation:

rod suspensions show strong shear thinning: microscopic reason

high viscosity

much lower viscosity

$$\Sigma_D = 2 \dot{\gamma}_0 \hat{\mathbf{E}} \sum_{n=0}^{\infty} |\eta|_n \sin(n\omega t + \delta_n)$$
$$P_2(t) = \sum_{n=0}^{\infty} |P_2|_n \cos(\omega t + \epsilon_n)$$

Scaling frequency:

$$\Omega_{eff} = \omega / D_R^{eff}$$

$$D_R^{eff} = D_R (1 - \varphi / \varphi_{IN})$$

We obtained the I—N spinodal point!

$$\frac{L}{d_{eff}}\varphi_{IN} = 3.0$$

&
$$D_R = 0.04 \ s^{-1}$$

Typical examples:

Distribution of curvatures:

Characterizing parameters

$$\bar{S}_T = \int_0^\pi \int_0^{2\pi} d\theta d\phi \sin(\phi) f(\theta_T, \phi_T) \hat{T}\hat{T}$$

$$\bar{Q} = \frac{1}{2}(3\bar{S} - \mathbf{I})$$

Biaxiality

$$\bar{Q}_{T,B} = \begin{pmatrix} -\frac{1}{2}\lambda_{T,B} - \eta_{T,B} & 0 & 0\\ 0 & -\frac{1}{2}\lambda_{T,B} + \eta_{T,B} & 0\\ 0 & 0 & \lambda_{T,B} \end{pmatrix}$$

Orientational order parameter

Note: this is the input for calculating stress tensor

Connection between ordering and stress

Shear experiments on F-Actin

Direct Observation of the Dynamics of Semiflexible Polymers in Shear Flow Harasim et al, PRL, 110 (2013)

Mobility Gradient Induces Cross-Streamline Migration of Semiflexible Polymers
Steinhauser et al, ACS Macroletters, p. 542 (2012)

Ill defined geometries; Infinite dilute; 2-D imaging

Bent:

III

Non-equilibrium isotropic-nematic binodal KULEUVEN

Probe dynamics

Probe dynamics with Large Amplitude Oscillatory Shear

Probe structure with *in situ* scattering methods over broad range of length-scales and time-scales

Complex flow: Complex fluids

start up on DNA at different ionic strngths

◆ 30 ★ 100

We see a reentrant behavior in shear thinning: Far away from I-N —> nothing around I-N but flexible —> shear banding towards ideal rod—> loose it Ideal—> nothing Systems:
high salat DNA/xanathan
low salt DNA/xanthan AND pb-peo
pf1 / F-actin
fd-y21m

Strong shear thinning does not mean that you will get Sms

done:

Open:

effect of salt works different directions, comparing DNA with pf1 How does system sustain orientation after disentanglement?

—> shear rate should now be scaled by local rotation motion and not reptation time.

For the how strong is strong question we have that indeed systems that have m>0.3 don't band Possible reason could be that gamma_high and gamma low are too close to each other.

Suggestion:

stiff rods go into nematic before reaching really high concentration

but

- 0.7% xanthan is not that high
- 0.5 mg/ml DNA also not that high
- 2 mg/ml for pb-Peo

- We see a link between I-N and shear banding

Is it the charge?

Screening charge aids SB for DNA screening charge reduces SB pf1 (if at all)

PbPeo is uncharged.

-> no

But: both very long contour length! xanthin, DNA and pb-peo are all long. F-actin also.

Is it the length or is it polydispersity?

What tuning tells us:

collateral understanding: understand stiff polymers and rods

- we got hold on shear thinning using new theory and ideal re
- We understand shear thinning stiff polymers. No theory!

Hint:

stress overshoot in LAOS when WLMs are overstretche

PHYSICS OF FLUIDS 25, 051703 (2013)

Shear banding in polymer solutions

Michael Cromer,1,2 Michael C. Villet,3 Glenn H. Fredrickson,1,2,4 and L. Gary Leal1,4,5

Figure 3. Probability density distribution of contour lengths for different molar fractions of DMF (solid line, square for f = 0; dashed line, circle for f = 0.025; dotted line, triangle for f = 0.06). The curves correspond to an exponential distribution with the parameters determined by DLS. The symbols are the data obtained from microscopy.

Merchant and Rill

DNA Phase Transitions

TABLE 1 Lengths, length distributions, and critical concentrations of DNA samples

DNA (bp)	Length* (nm)	Range*		SD§		C;*
		(bp)	(nm)	(bp)	$M_{ m W}/M_{ m n}^{ m q}$	(mg/ml)
147	50	135–162	46–55	±12	1.07	135
170	58	131-210	44–71	±32	1.07	122
336	114	311-355	105-120	±19	1.01	48
570	190	257-1140	87-386	NA	1.23	23
1450	490	766-2400	262-804	±690	1.14	13
8000	2700	4k->23k	1352-7774	NA	ND	13