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Beside the computational scalability of an HPC application, its

I/O behaviour can massively influence the overall performance.

To allow validation and testing of I/O performance

bottlenecks and improvements, an I/O benchmarking activity

was established as part of the EoCoE project.
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I/O benchmarking
Two benchmark applications - IOR and Partest - were selected to

evaluate different types of I/O. Three different systems at PSNC

(Eagle), ENEA (CRESCO) and JUELICH (JURECA) are used to

run the benchmarks. They were executed through the JUBE

benchmarking environment.

IOR

• Well known and established I/O benchmark

• Initially developed by LLNL (https://github.com/hpc/ior)

• Supports MPIIO, HDF5, PnetCDF and Posix

• Allows to validate library overhead, collective vs. independent

I/O behaviour and the dependence of different transfer sizes

• Investigation on compact and strided data layout

• IOR file layout:
Partest

• Benchmark is part of the SIONlib I/O library

• Allow comparison of shared and distributed file I/O

• Supports SIONlib and Posix

• Simulation of typical checkpointing behaviour
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Benchmarking results
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I/O behaviour of the EoCoE applications
An I/O questionnaire was designed and circulated to the

different EoCoE application owners to gather relevant I/O

information and patterns in the context of a typical production run.
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Comparison of strided and compact data layouts to

visualize the bandwidth difference for different file

access patterns.

Benefits and problems of collective I/O operations

Lustre based filesystems allow the user to change filesystem parameters such as the number

of involved object storage targets (OSTs) and the file stripe size amongst all involved OSTs.

Left to right: (1) Default number of OSTs (12) and default strip-size setting (1MiB); (2) increasing number of OSTs (126); (3) increasing stripe size

to align with the individual amount of data per process (256MiB)

Influence of local cache effects

Left: Cache effect in the task local access scheme; right: Avoiding local cache effects by

reordering the tasks to use different tasks for the reading than for writing

Left: Collective I/O bandwidth degradation for compact file layout; right: Collective

I/O read-bandwidth improvement for strided data layout

Comparison of the task local

file access scheme, using

multiple files or the SIONlib

library


