
The I/O Benchmarking Activity

of the EoCoE Project
F. Ambrosino1, M. Brzezniak2, W. Frings4, A. Funel1, G. Guarnieri1, M. Haefele3,

F. Iannone1, S. Lührs4, T.Paluszkiewicz2, K. Sierocinski2

Beside the computational scalability of an HPC application, its

I/O behaviour can massively influence the overall performance.

To allow validation and testing of I/O performance

bottlenecks and improvements, an I/O benchmarking activity

was established as part of the EoCoE project.

0

1

2

3

4

5

6

7

8

9

10

MPI I/O

HDF5

NetCDF

PnetCDFSIONlib

Standard library
ASCII output

Standard library
binary output

EoCoE applications I/O library distribution

I/O benchmarking
Two benchmark applications - IOR and Partest - were selected to

evaluate different types of I/O. Three different systems at PSNC

(Eagle), ENEA (CRESCO) and JUELICH (JURECA) are used to

run the benchmarks. They were executed through the JUBE

benchmarking environment.

IOR

• Well known and established I/O benchmark

• Initially developed by LLNL (https://github.com/hpc/ior)

• Supports MPIIO, HDF5, PnetCDF and Posix

• Allows to validate library overhead, collective vs. independent

I/O behaviour and the dependence of different transfer sizes

• Investigation on compact and strided data layout

• IOR file layout:
Partest

• Benchmark is part of the SIONlib I/O library

• Allow comparison of shared and distributed file I/O

• Supports SIONlib and Posix

• Simulation of typical checkpointing behaviour

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

1ENEA - Italy, 2PSNC - Poland, 3Maison de la simulation - France, 4Jülich Supercomputing Centre - Germany

Benchmarking results

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

D
a

ta
 s

iz
e

 [
M

B
]

Total size of output files

Size of a single checkpoint

I/O behaviour of the EoCoE applications
An I/O questionnaire was designed and circulated to the

different EoCoE application owners to gather relevant I/O

information and patterns in the context of a typical production run.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

independent collective

B
an

d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4
nodes, 4MiB transfer size, basic data layout

Read bandwidth Write bandwidth

0

1000

2000

3000

4000

5000

6000

independent collective

B
an

d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4
nodes, 128kiB transfer size, strided data layout

Read bandwidth Write bandwidth

Comparison of strided and compact data layouts to

visualize the bandwidth difference for different file

access patterns.

Benefits and problems of collective I/O operations

Lustre based filesystems allow the user to change filesystem parameters such as the number

of involved object storage targets (OSTs) and the file stripe size amongst all involved OSTs.

Left to right: (1) Default number of OSTs (12) and default strip-size setting (1MiB); (2) increasing number of OSTs (126); (3) increasing stripe size

to align with the individual amount of data per process (256MiB)

Influence of local cache effects

Left: Cache effect in the task local access scheme; right: Avoiding local cache effects by

reordering the tasks to use different tasks for the reading than for writing

Left: Collective I/O bandwidth degradation for compact file layout; right: Collective

I/O read-bandwidth improvement for strided data layout

Comparison of the task local

file access scheme, using

multiple files or the SIONlib

library

