000858862 001__ 858862
000858862 005__ 20240610120339.0
000858862 0247_ $$2doi$$a10.1016/j.intermet.2018.10.014
000858862 0247_ $$2ISSN$$a0966-9795
000858862 0247_ $$2ISSN$$a1879-0216
000858862 0247_ $$2WOS$$aWOS:000456760300021
000858862 037__ $$aFZJ-2018-07698
000858862 082__ $$a670
000858862 1001_ $$0P:(DE-HGF)0$$aVrtnik, S.$$b0
000858862 245__ $$aMagnetic phase diagram and magnetoresistance of Gd–Tb–Dy–Ho–Lu hexagonal high-entropy alloy
000858862 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000858862 3367_ $$2DRIVER$$aarticle
000858862 3367_ $$2DataCite$$aOutput Types/Journal article
000858862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545300504_26488
000858862 3367_ $$2BibTeX$$aARTICLE
000858862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858862 3367_ $$00$$2EndNote$$aJournal Article
000858862 520__ $$aWe present a study of the magnetic phase diagram and the magnetoresistance of a Gd–Tb–Dy–Ho–Lu "ideal" hexagonal high-entropy alloy (HEA), composed of the elements from the heavy half of the rare earth series only. The phase diagram contains an antiferromagnetic (AFM) state, a field-induced ferromagnetic (FM) state above the AFM-to-FM spin-flop transition and a low-temperature spin-glass state. The complex phase diagram is a result of competition between the periodic potential arising from the electronic band structure that favors periodic magnetic ordering, the substitutional-disorder-induced random local potential that favors spin-glass-type spin freezing in random directions, the Zeeman interaction with the external magnetic field that favors spin alignment along the field direction and the thermal agitation that opposes any spin ordering. The magnetoresistance reflects complexity of the phase diagram. Its temperature dependence can be explained by a continuous weakening and final disappearance of the periodic potential upon cooling that leads to the destruction of long-range ordered periodic magnetic structures. The magnetoresistance is large only at temperatures, where the AFM and field-induced FM structures are present and exhibits a maximum at the critical field of the AFM-to-FM transition. Within the AFM phase, the magnetoresistance is positive with a quadratic field dependence, whereas it is negative with a logarithmic-like field dependence within the field-induced FM phase. At lower temperatures, the long-range periodic spin order "melts" and the magnetoresistance diminishes until it totally vanishes within the low-temperature spin glass phase. The magnetoresistance is asymmetric with respect to the field sweep direction, reflecting nonergodicity and frustration of the spin system.
000858862 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000858862 588__ $$aDataset connected to CrossRef
000858862 7001_ $$0P:(DE-HGF)0$$aLužnik, J.$$b1
000858862 7001_ $$0P:(DE-HGF)0$$aKoželj, P.$$b2
000858862 7001_ $$0P:(DE-HGF)0$$aJelen, A.$$b3
000858862 7001_ $$0P:(DE-HGF)0$$aLuzar, J.$$b4
000858862 7001_ $$0P:(DE-HGF)0$$aKrnel, M.$$b5
000858862 7001_ $$0P:(DE-HGF)0$$aJagličić, Z.$$b6
000858862 7001_ $$0P:(DE-HGF)0$$aMeden, A.$$b7
000858862 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, M.$$b8
000858862 7001_ $$0P:(DE-HGF)0$$aDolinšek, J.$$b9$$eCorresponding author
000858862 773__ $$0PERI:(DE-600)2028968-6$$a10.1016/j.intermet.2018.10.014$$gVol. 105, p. 163 - 172$$p163 - 172$$tIntermetallics$$v105$$x0966-9795$$y2019
000858862 8564_ $$uhttps://juser.fz-juelich.de/record/858862/files/1-s2.0-S0966979518302930-main.pdf$$yRestricted
000858862 8564_ $$uhttps://juser.fz-juelich.de/record/858862/files/1-s2.0-S0966979518302930-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858862 909CO $$ooai:juser.fz-juelich.de:858862$$pVDB
000858862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich$$b8$$kFZJ
000858862 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000858862 9141_ $$y2019
000858862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINTERMETALLICS : 2017
000858862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858862 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858862 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858862 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858862 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858862 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858862 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858862 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000858862 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858862 920__ $$lyes
000858862 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000858862 980__ $$ajournal
000858862 980__ $$aVDB
000858862 980__ $$aI:(DE-Juel1)PGI-5-20110106
000858862 980__ $$aUNRESTRICTED
000858862 981__ $$aI:(DE-Juel1)ER-C-1-20170209