001     858862
005     20240610120339.0
024 7 _ |a 10.1016/j.intermet.2018.10.014
|2 doi
024 7 _ |a 0966-9795
|2 ISSN
024 7 _ |a 1879-0216
|2 ISSN
024 7 _ |a WOS:000456760300021
|2 WOS
037 _ _ |a FZJ-2018-07698
082 _ _ |a 670
100 1 _ |a Vrtnik, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnetic phase diagram and magnetoresistance of Gd–Tb–Dy–Ho–Lu hexagonal high-entropy alloy
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545300504_26488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a study of the magnetic phase diagram and the magnetoresistance of a Gd–Tb–Dy–Ho–Lu "ideal" hexagonal high-entropy alloy (HEA), composed of the elements from the heavy half of the rare earth series only. The phase diagram contains an antiferromagnetic (AFM) state, a field-induced ferromagnetic (FM) state above the AFM-to-FM spin-flop transition and a low-temperature spin-glass state. The complex phase diagram is a result of competition between the periodic potential arising from the electronic band structure that favors periodic magnetic ordering, the substitutional-disorder-induced random local potential that favors spin-glass-type spin freezing in random directions, the Zeeman interaction with the external magnetic field that favors spin alignment along the field direction and the thermal agitation that opposes any spin ordering. The magnetoresistance reflects complexity of the phase diagram. Its temperature dependence can be explained by a continuous weakening and final disappearance of the periodic potential upon cooling that leads to the destruction of long-range ordered periodic magnetic structures. The magnetoresistance is large only at temperatures, where the AFM and field-induced FM structures are present and exhibits a maximum at the critical field of the AFM-to-FM transition. Within the AFM phase, the magnetoresistance is positive with a quadratic field dependence, whereas it is negative with a logarithmic-like field dependence within the field-induced FM phase. At lower temperatures, the long-range periodic spin order "melts" and the magnetoresistance diminishes until it totally vanishes within the low-temperature spin glass phase. The magnetoresistance is asymmetric with respect to the field sweep direction, reflecting nonergodicity and frustration of the spin system.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lužnik, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Koželj, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jelen, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Luzar, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Krnel, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jagličić, Z.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Meden, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Feuerbacher, M.
|0 P:(DE-Juel1)130637
|b 8
700 1 _ |a Dolinšek, J.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.intermet.2018.10.014
|g Vol. 105, p. 163 - 172
|0 PERI:(DE-600)2028968-6
|p 163 - 172
|t Intermetallics
|v 105
|y 2019
|x 0966-9795
856 4 _ |u https://juser.fz-juelich.de/record/858862/files/1-s2.0-S0966979518302930-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858862/files/1-s2.0-S0966979518302930-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858862
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130637
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INTERMETALLICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21