TY - JOUR
AU - Soler, R.
AU - Evirgen, A.
AU - Yao, M.
AU - Kirchlechner, C.
AU - Stein, F.
AU - Feuerbacher, M.
AU - Raabe, D.
AU - Dehm, G.
TI - Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure
JO - Acta materialia
VL - 156
SN - 1359-6454
CY - Amsterdam [u.a.]
PB - Elsevier Science85412
M1 - FZJ-2018-07700
SP - 86 - 96
PY - 2018
AB - The microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure was performed. The phase state and chemical homogeneity of the solid solution were analysed with respect to crystal structure, phase stability, and oxide formation. It was found that Y-rich precipitates form at grain boundaries and that the alloy is prone to oxidation, leading to a homogeneous distribution of ∼10 nm-sized oxides in the grain interiors. The plastic response at the sub-grain level was studied in terms of the activated slip systems, critical resolved shear stresses (CRSS), and strain hardening using micropillar compression tests. We observe plastic slip on the basal <a> system, with a CRSS of 196 ± 14.7 MPa. Particle strengthening and strength dependence on sample size are discussed on the basis of dislocation particle interaction and mechanical size effects.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000442062800009
DO - DOI:10.1016/j.actamat.2018.06.010
UR - https://juser.fz-juelich.de/record/858864
ER -