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Parallel I/O usage

• The I/O behaviour of an HPC application can significantly influence the 

overall performance.

• With exascale computing also I/O storage and bandwidth demands will 

increase

• Several different I/O APIs are in use:
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Parallel I/O strategies
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Serial I/O Task local I/O Shared file I/O

+ Simple to implement

- I/O bandwidth is limited to the rate of 

this single process

- Additional communication might be 

necessary

- Other processes may idle and waste 

computing resources during I/O time

+ Simple to implement

+ No coordination between processes 

needed

+ No false sharing of file system blocks 

- Number of files quickly becomes 

unmanageable

- Files often need to be merged to 

create a canonical dataset

- File system might serialize meta data 

modification

+ Number of files is independent 

of number of processes 

+ File can be in canonical 

representation (no post-

processing) 

- Uncoordinated client requests 

might induce time penalties

- File layout may induce false 

sharing of file system blocks 



I/O benchmarking

• Creation of reproducible I/O patterns to investigate API and hardware 

specific behaviour

• Benchmarks used by the EoCoE I/O benchmarking activity:
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IOR

• Well known and established I/O benchmark
• https://github.com/hpc/ior

• Supports MPIIO, HDF5, PnetCDF and POSIX

• Allows to validate library overhead, collective vs. 

independent I/O behaviour and the dependence 

of different transfer sizes

• IOR file layout:

Partest

• Benchmark is part of the SIONlib

I/O library
• www.fz-juelich.de/jsc/sionlib

• Allows comparison of shared and 

distributed file I/O

• Supports SIONlib and POSIX

• Simulation of typical 

checkpointing behaviour



I/O benchmarking: IOR patterns
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• Large continuous data blocks for each 

individual process 
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multi dimensional arrays 
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I/O benchmarking: Bandwidth
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Pitfall 1: Frequent flushing on small blocks 

• Modern file systems in HPC have large file 

system blocks (e.g. 4MB)

• A flush on a file handle forces the file system to perform all 

pending write operations

• If application writes in small data blocks, the same file system 

block has to be read and written multiple times

• Performance degradation due to the inability to combine 

several write calls
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I/O benchmarking: Small transfer size
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Pitfall 2: False sharing of file system blocks 

• Data blocks of individual processes do not fill up a complete 

file system block

• Several processes share a file system block 

• Exclusive access (e.g. write) must be serialized

• The more processes have to synchronize the more waiting 

time will propagate 
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Pitfall 3: Metadata modification 
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Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

T/F: 4096/1

T/F: 16384/1

T/F: 512/1 or 1/1

Directory metadata File metadata

• Metadata operations can serialize I/O operations

Parallel I/O on JUGENE
W. Frings



Pitfall 4: Portability 
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Endianness

Address Little Endian Big Endian 

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Address row-major order 

(e.g. C/C++)

column-major 

order (e.g. 

Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

… … …

Array memory order

• Data post-processing can be very time consuming

• Portable dataformats (such as HDF5 or NetCDF) allow easy 

data exchange within application workflows



Avoiding pitfalls: General remarks

• Large continuous data chunks show better performance

• Task local files automatically avoid false sharing of 

filesystem blocks and file specific metadata problems

• API specific mechanics allow to rebuild continuous data 

chunks (e.g. collective buffering or HDF5 chunking)

• Portable data formats allow a global data view and avoid 

portability problems

• Usage of intermediate cache infrastructure or local flash 

storage devices
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Avoiding pitfalls: Collective buffering

• Collective I/O operations not always speed up the general I/O, 

as more data might be processed than needed
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Avoiding pitfalls: Filesystem specifc options

• On Lustre filesystems the user can influence the striping size 

and the number of involved object storage targets

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 14

Default number of OSTs (12) and

default strip-size setting (1MiB)

Increased number of OSTs (126) Increased stripe size to align

with the individual amount of

data per process (256MiB)

Measurements on Eagle at PSNC



• More details and results on the EoCoE I/O benchmarking 

activity can be found in deliverable D1.12 of the EoCoE project
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