
Parallel I/O: 
Benchmarking and common pitfalls

Sebastian Lührs – Jülich Supercomputing Centre

Final conference of the Energy-Oriented Centre of Excellence 

Nicosia – Cyprus

Contributors: F. Ambrosino, M. Brzezniak, W. Frings, A. Funel, G. Guarnieri, M. Haefele, 

F. Iannone, T.Paluszkiewicz, K. Sierocinski



Parallel I/O usage

• The I/O behaviour of an HPC application can significantly influence the 

overall performance.

• With exascale computing also I/O storage and bandwidth demands will 

increase

• Several different I/O APIs are in use:

2018-09-17 Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 2018 2

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF
…

…
S

h
a

re
d

fi
le

Task-

local

files

…

NetCDF-4

SIONlib

data stored in global view in local view

The parallel I/O software stack

0
1
2
3
4
5
6
7
8
9

10
MPI I/O

HDF5

NetCDF

PnetCDFSIONlib

Standard library ASCII
output

Standard library binary
output

EoCoE applications I/O library distribution



Parallel I/O strategies

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 3

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Serial I/O Task local I/O Shared file I/O

+ Simple to implement

- I/O bandwidth is limited to the rate of 

this single process

- Additional communication might be 

necessary

- Other processes may idle and waste 

computing resources during I/O time

+ Simple to implement

+ No coordination between processes 

needed

+ No false sharing of file system blocks 

- Number of files quickly becomes 

unmanageable

- Files often need to be merged to 

create a canonical dataset

- File system might serialize meta data 

modification

+ Number of files is independent 

of number of processes 

+ File can be in canonical 

representation (no post-

processing) 

- Uncoordinated client requests 

might induce time penalties

- File layout may induce false 

sharing of file system blocks 



I/O benchmarking

• Creation of reproducible I/O patterns to investigate API and hardware 

specific behaviour

• Benchmarks used by the EoCoE I/O benchmarking activity:

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 4

IOR

• Well known and established I/O benchmark
• https://github.com/hpc/ior

• Supports MPIIO, HDF5, PnetCDF and POSIX

• Allows to validate library overhead, collective vs. 

independent I/O behaviour and the dependence 

of different transfer sizes

• IOR file layout:

Partest

• Benchmark is part of the SIONlib

I/O library
• www.fz-juelich.de/jsc/sionlib

• Allows comparison of shared and 

distributed file I/O

• Supports SIONlib and POSIX

• Simulation of typical 

checkpointing behaviour



I/O benchmarking: IOR patterns

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 5

continuous

• Large continuous data blocks for each 

individual process 

striped

• Pattern often found while handling 

multi dimensional arrays 

Task 0

Task 1

Task 3

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

256MiB

128kiB



I/O benchmarking: Bandwidth

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 6

continuous striped

read 

bandwidth

write 

bandwidth

Measurements on JURECA at JSC



Pitfall 1: Frequent flushing on small blocks 

• Modern file systems in HPC have large file 

system blocks (e.g. 4MB)

• A flush on a file handle forces the file system to perform all 

pending write operations

• If application writes in small data blocks, the same file system 

block has to be read and written multiple times

• Performance degradation due to the inability to combine 

several write calls

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 7



I/O benchmarking: Small transfer size

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 8

4 MiB 128 kiB

read 

bandwidth

write 

bandwidth



Pitfall 2: False sharing of file system blocks 

• Data blocks of individual processes do not fill up a complete 

file system block

• Several processes share a file system block 

• Exclusive access (e.g. write) must be serialized

• The more processes have to synchronize the more waiting 

time will propagate 

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 9

file system block

data block free file system block

FS Block FS Block FS Block 

data

task 1

data

task 2
… …

lock

t1 t2

lock



Pitfall 3: Metadata modification 

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 10

Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

T/F: 4096/1

T/F: 16384/1

T/F: 512/1 or 1/1

Directory metadata File metadata

• Metadata operations can serialize I/O operations

Parallel I/O on JUGENE
W. Frings



Pitfall 4: Portability 

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 11

Endianness

Address Little Endian Big Endian 

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Address row-major order 

(e.g. C/C++)

column-major 

order (e.g. 

Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

… … …

Array memory order

• Data post-processing can be very time consuming

• Portable dataformats (such as HDF5 or NetCDF) allow easy 

data exchange within application workflows



Avoiding pitfalls: General remarks

• Large continuous data chunks show better performance

• Task local files automatically avoid false sharing of 

filesystem blocks and file specific metadata problems

• API specific mechanics allow to rebuild continuous data 

chunks (e.g. collective buffering or HDF5 chunking)

• Portable data formats allow a global data view and avoid 

portability problems

• Usage of intermediate cache infrastructure or local flash 

storage devices

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 12



Avoiding pitfalls: Collective buffering

• Collective I/O operations not always speed up the general I/O, 

as more data might be processed than needed

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 13

0

1000

2000

3000

4000

5000

6000

independent collective

B
a
n
d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes, 
128kiB transfer size, strided data layout

Read bandwidth Write bandwidth

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

independent collective

B
a
n
d
w

id
th

 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes, 
4MiB transfer size, basic data layout

Read bandwidth Write bandwidth



Avoiding pitfalls: Filesystem specifc options

• On Lustre filesystems the user can influence the striping size 

and the number of involved object storage targets

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 14

Default number of OSTs (12) and

default strip-size setting (1MiB)

Increased number of OSTs (126) Increased stripe size to align

with the individual amount of

data per process (256MiB)

Measurements on Eagle at PSNC



• More details and results on the EoCoE I/O benchmarking 

activity can be found in deliverable D1.12 of the EoCoE project

Final EoCoE conference, Nicosia, Cyprus, 17th September - 18th September 20182018-09-17 15

This work was supported by the Energy oriented Centre of Excellence (EoCoE), 

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Thank you for your attention.


