000858884 001__ 858884
000858884 005__ 20240619083549.0
000858884 0247_ $$2doi$$a10.1038/s41598-018-32278-5
000858884 0247_ $$2Handle$$a2128/21046
000858884 0247_ $$2pmid$$apmid:30262869
000858884 0247_ $$2WOS$$aWOS:000445815700003
000858884 0247_ $$2altmetric$$aaltmetric:52601224
000858884 037__ $$aFZJ-2018-07720
000858884 041__ $$aEnglish
000858884 082__ $$a600
000858884 1001_ $$0P:(DE-HGF)0$$aBoire, Adeline$$b0$$eCorresponding author
000858884 245__ $$aDynamics of liquid-liquid phase separation of wheat gliadins
000858884 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2018
000858884 3367_ $$2DRIVER$$aarticle
000858884 3367_ $$2DataCite$$aOutput Types/Journal article
000858884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546440182_2042
000858884 3367_ $$2BibTeX$$aARTICLE
000858884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858884 3367_ $$00$$2EndNote$$aJournal Article
000858884 520__ $$aDuring wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces.
000858884 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858884 588__ $$aDataset connected to CrossRef
000858884 7001_ $$0P:(DE-HGF)0$$aSanchez, Christian$$b1
000858884 7001_ $$0P:(DE-HGF)0$$aMorel, Marie-Hélène$$b2
000858884 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b3$$ufzj
000858884 7001_ $$0P:(DE-HGF)0$$aMenut, Paul$$b4
000858884 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-32278-5$$gVol. 8, no. 1, p. 14441$$n1$$p14441$$tScientific reports$$v8$$x2045-2322$$y2018
000858884 8564_ $$uhttps://juser.fz-juelich.de/record/858884/files/s41598-018-32278-5-1.pdf$$yOpenAccess
000858884 8564_ $$uhttps://juser.fz-juelich.de/record/858884/files/s41598-018-32278-5-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858884 909CO $$ooai:juser.fz-juelich.de:858884$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b3$$kFZJ
000858884 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858884 9141_ $$y2018
000858884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858884 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858884 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858884 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858884 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000858884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000858884 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858884 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858884 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858884 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858884 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858884 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858884 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858884 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858884 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000858884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858884 920__ $$lyes
000858884 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000858884 9801_ $$aFullTexts
000858884 980__ $$ajournal
000858884 980__ $$aVDB
000858884 980__ $$aUNRESTRICTED
000858884 980__ $$aI:(DE-Juel1)ICS-3-20110106