000858884 001__ 858884 000858884 005__ 20240619083549.0 000858884 0247_ $$2doi$$a10.1038/s41598-018-32278-5 000858884 0247_ $$2Handle$$a2128/21046 000858884 0247_ $$2pmid$$apmid:30262869 000858884 0247_ $$2WOS$$aWOS:000445815700003 000858884 0247_ $$2altmetric$$aaltmetric:52601224 000858884 037__ $$aFZJ-2018-07720 000858884 041__ $$aEnglish 000858884 082__ $$a600 000858884 1001_ $$0P:(DE-HGF)0$$aBoire, Adeline$$b0$$eCorresponding author 000858884 245__ $$aDynamics of liquid-liquid phase separation of wheat gliadins 000858884 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2018 000858884 3367_ $$2DRIVER$$aarticle 000858884 3367_ $$2DataCite$$aOutput Types/Journal article 000858884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546440182_2042 000858884 3367_ $$2BibTeX$$aARTICLE 000858884 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000858884 3367_ $$00$$2EndNote$$aJournal Article 000858884 520__ $$aDuring wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces. 000858884 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000858884 588__ $$aDataset connected to CrossRef 000858884 7001_ $$0P:(DE-HGF)0$$aSanchez, Christian$$b1 000858884 7001_ $$0P:(DE-HGF)0$$aMorel, Marie-Hélène$$b2 000858884 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b3$$ufzj 000858884 7001_ $$0P:(DE-HGF)0$$aMenut, Paul$$b4 000858884 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-32278-5$$gVol. 8, no. 1, p. 14441$$n1$$p14441$$tScientific reports$$v8$$x2045-2322$$y2018 000858884 8564_ $$uhttps://juser.fz-juelich.de/record/858884/files/s41598-018-32278-5-1.pdf$$yOpenAccess 000858884 8564_ $$uhttps://juser.fz-juelich.de/record/858884/files/s41598-018-32278-5-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000858884 909CO $$ooai:juser.fz-juelich.de:858884$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000858884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b3$$kFZJ 000858884 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000858884 9141_ $$y2018 000858884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000858884 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000858884 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000858884 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000858884 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000858884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017 000858884 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000858884 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000858884 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000858884 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000858884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000858884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000858884 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000858884 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000858884 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000858884 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000858884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000858884 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000858884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000858884 920__ $$lyes 000858884 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000858884 9801_ $$aFullTexts 000858884 980__ $$ajournal 000858884 980__ $$aVDB 000858884 980__ $$aUNRESTRICTED 000858884 980__ $$aI:(DE-Juel1)ICS-3-20110106