000858885 001__ 858885 000858885 005__ 20240619083549.0 000858885 0247_ $$2doi$$a10.1080/00268976.2018.1497210 000858885 0247_ $$2ISSN$$a0026-8976 000858885 0247_ $$2ISSN$$a1362-3028 000858885 0247_ $$2WOS$$aWOS:000444571600011 000858885 037__ $$aFZJ-2018-07721 000858885 082__ $$a530 000858885 1001_ $$0P:(DE-HGF)0$$aKlop, Kira E.$$b0$$eCorresponding author 000858885 245__ $$aCapillary nematisation of colloidal rods in confinement 000858885 260__ $$aLondon$$bTaylor & Francis$$c2018 000858885 3367_ $$2DRIVER$$aarticle 000858885 3367_ $$2DataCite$$aOutput Types/Journal article 000858885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547731504_2871 000858885 3367_ $$2BibTeX$$aARTICLE 000858885 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000858885 3367_ $$00$$2EndNote$$aJournal Article 000858885 520__ $$aWe confine a colloidal liquid crystal between parallel plates separated down to several times the rod length. By connecting the system to a reservoir we effectively create a grand canonical system, in which the liquid crystal displays an isotropic phase in the reservoir, but upon strong confinement becomes nematic between the parallel plates. This capillary nematisation transition can be followed down to the single particle level by means of laser scanning confocal microscopy. We compare the experimental findings to density functional theories (DFTs), within the Zwanzig model as well as a more advanced DFT, in which the effect of rod flexibility is taken into account. 000858885 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000858885 588__ $$aDataset connected to CrossRef 000858885 7001_ $$0P:(DE-HGF)0$$aDullens, Roel P. A.$$b1 000858885 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b2 000858885 7001_ $$0P:(DE-HGF)0$$aEgorov, Sergei A.$$b3 000858885 7001_ $$0P:(DE-HGF)0$$aAarts, Dirk G. A. L.$$b4 000858885 773__ $$0PERI:(DE-600)1491083-4$$a10.1080/00268976.2018.1497210$$gVol. 116, no. 21-22, p. 2864 - 2871$$n21-22$$p2864 - 2871$$tMolecular physics$$v116$$x1362-3028$$y2018 000858885 909CO $$ooai:juser.fz-juelich.de:858885$$pVDB 000858885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b2$$kFZJ 000858885 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000858885 9141_ $$y2018 000858885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000858885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PHYS : 2017 000858885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000858885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000858885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000858885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000858885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000858885 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000858885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000858885 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000858885 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000858885 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000858885 920__ $$lyes 000858885 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000858885 980__ $$ajournal 000858885 980__ $$aVDB 000858885 980__ $$aI:(DE-Juel1)ICS-3-20110106 000858885 980__ $$aUNRESTRICTED