000858885 001__ 858885
000858885 005__ 20240619083549.0
000858885 0247_ $$2doi$$a10.1080/00268976.2018.1497210
000858885 0247_ $$2ISSN$$a0026-8976
000858885 0247_ $$2ISSN$$a1362-3028
000858885 0247_ $$2WOS$$aWOS:000444571600011
000858885 037__ $$aFZJ-2018-07721
000858885 082__ $$a530
000858885 1001_ $$0P:(DE-HGF)0$$aKlop, Kira E.$$b0$$eCorresponding author
000858885 245__ $$aCapillary nematisation of colloidal rods in confinement
000858885 260__ $$aLondon$$bTaylor & Francis$$c2018
000858885 3367_ $$2DRIVER$$aarticle
000858885 3367_ $$2DataCite$$aOutput Types/Journal article
000858885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547731504_2871
000858885 3367_ $$2BibTeX$$aARTICLE
000858885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858885 3367_ $$00$$2EndNote$$aJournal Article
000858885 520__ $$aWe confine a colloidal liquid crystal between parallel plates separated down to several times the rod length. By connecting the system to a reservoir we effectively create a grand canonical system, in which the liquid crystal displays an isotropic phase in the reservoir, but upon strong confinement becomes nematic between the parallel plates. This capillary nematisation transition can be followed down to the single particle level by means of laser scanning confocal microscopy. We compare the experimental findings to density functional theories (DFTs), within the Zwanzig model as well as a more advanced DFT, in which the effect of rod flexibility is taken into account.
000858885 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858885 588__ $$aDataset connected to CrossRef
000858885 7001_ $$0P:(DE-HGF)0$$aDullens, Roel P. A.$$b1
000858885 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b2
000858885 7001_ $$0P:(DE-HGF)0$$aEgorov, Sergei A.$$b3
000858885 7001_ $$0P:(DE-HGF)0$$aAarts, Dirk G. A. L.$$b4
000858885 773__ $$0PERI:(DE-600)1491083-4$$a10.1080/00268976.2018.1497210$$gVol. 116, no. 21-22, p. 2864 - 2871$$n21-22$$p2864 - 2871$$tMolecular physics$$v116$$x1362-3028$$y2018
000858885 909CO $$ooai:juser.fz-juelich.de:858885$$pVDB
000858885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b2$$kFZJ
000858885 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858885 9141_ $$y2018
000858885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PHYS : 2017
000858885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858885 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858885 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858885 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858885 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858885 920__ $$lyes
000858885 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000858885 980__ $$ajournal
000858885 980__ $$aVDB
000858885 980__ $$aI:(DE-Juel1)ICS-3-20110106
000858885 980__ $$aUNRESTRICTED