000858891 001__ 858891
000858891 005__ 20210130000129.0
000858891 0247_ $$2doi$$a10.1038/s41534-019-0190-7
000858891 0247_ $$2ISSN$$a1598-0634
000858891 0247_ $$2ISSN$$a2056-6387
000858891 0247_ $$2ISSN$$a2377-0058
000858891 0247_ $$2Handle$$a2128/23541
000858891 0247_ $$2altmetric$$aaltmetric:65787528
000858891 0247_ $$2WOS$$aWOS:000483983200001
000858891 037__ $$aFZJ-2018-07727
000858891 082__ $$a530
000858891 1001_ $$0P:(DE-HGF)0$$aFrees, Adam$$b0$$eCorresponding author
000858891 245__ $$aAdiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits
000858891 260__ $$aLondon$$bNature Publ. Group$$c2019
000858891 3367_ $$2DRIVER$$aarticle
000858891 3367_ $$2DataCite$$aOutput Types/Journal article
000858891 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575459539_5938
000858891 3367_ $$2BibTeX$$aARTICLE
000858891 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858891 3367_ $$00$$2EndNote$$aJournal Article
000858891 520__ $$aThe ability to tune qubits to flat points in their energy dispersions (“sweet spots”) is an important tool for mitigating the effects of charge noise and dephasing in solid-state devices. However, the number of derivatives that must be simultaneously set to zero grows exponentially with the number of coupled qubits, making the task untenable for as few as two qubits. This is a particular problem for adiabatic gates, due to their slower speeds. Here, we propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the tunable, electrostatic coupling between distinct charge configurations. We confirm the absence of a conventional sweet spot, but show that controlled-Z (CZ) gates can nonetheless be optimized to have fidelities of ~99% for a typical level of quasistatic charge noise (σε ≃ 1 μeV). We then develop the concept of a dynamical sweet spot (DSS), for which the time-averaged energy derivatives are set to zero, and identify a simple pulse sequence that achieves an approximate DSS for a CZ gate, with a 5× improvement in the fidelity. We observe that the results depend on the number of tunable parameters in the pulse sequence, and speculate that a more elaborate sequence could potentially attain a true DSS.
000858891 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000858891 588__ $$aDataset connected to CrossRef
000858891 7001_ $$0P:(DE-Juel1)145051$$aMehl, Sebastian$$b1
000858891 7001_ $$0P:(DE-HGF)0$$aGamble, John King$$b2
000858891 7001_ $$0P:(DE-HGF)0$$aFriesen, Mark$$b3
000858891 7001_ $$0P:(DE-HGF)0$$aCoppersmith, S. N.$$b4
000858891 773__ $$0PERI:(DE-600)2841736-7$$a10.1038/s41534-019-0190-7$$gVol. 5, no. 1, p. 73$$n1$$p73$$tnpj Quantum information$$v5$$x2056-6387$$y2019
000858891 8564_ $$uhttps://juser.fz-juelich.de/record/858891/files/s41534-019-0190-7.pdf$$yOpenAccess
000858891 8564_ $$uhttps://juser.fz-juelich.de/record/858891/files/s41534-019-0190-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858891 909CO $$ooai:juser.fz-juelich.de:858891$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145051$$aForschungszentrum Jülich$$b1$$kFZJ
000858891 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000858891 9141_ $$y2019
000858891 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858891 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858891 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ QUANTUM INFORM : 2017
000858891 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ QUANTUM INFORM : 2017
000858891 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858891 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858891 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858891 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858891 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858891 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000858891 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858891 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858891 920__ $$lyes
000858891 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000858891 980__ $$ajournal
000858891 980__ $$aVDB
000858891 980__ $$aUNRESTRICTED
000858891 980__ $$aI:(DE-Juel1)PGI-2-20110106
000858891 9801_ $$aFullTexts