

How rods give structure to fluids and how structure is distorted by flow

Pavlik Lettinga

ESPCI/Paris 7 or Diderot/Sorbonne/CNRS/..., September 2018

Rods: extremely effective in structuring a fluid

JÜLICH FORSCHUNGSZENTRUM KULEUVEN

Rods: extremely effective in structuring a fluid

Phase transitions of colloidal rods

Isotropic

Nematic

Smectic

Columnar

Colloidal rods in shear flow

$$Pe_{eff} < 1$$

$$Pe_{eff} = \dot{\gamma_0} / D_{eff}^R$$

$$\eta/\eta_0 \to 1$$

Goal: understand shear thinning of systems like...
nano cellulose
carbon nano tubes
amyloid
F-actin

Bacteriophages as model system

Genetic Modification

system	L [µm]	L _p [µm]
fd wild type	0.88	2.8
fd Y21M	0.91	9.9
Pf1	1.96	2.8
M13k07	1.2	2.8

Fluorescent Microscopy

Dynamics at increasing degree of ordering

Connection between entropy and diffusion:

More free volume = More space per particle

More space per particle= Higher positional entropy

More space per particle= Faster diffusion

Faster diffusion = Signature for increase of translational entropy

Isotropic

Nematic

Dynamics at increasing degree of ordering

Signature increase entropy

Dynamics in the smectic phase

Permeation:

Transport through layers

Dynamics in the smectic phase

Find jumps in trajectories:

Open: 110 mM

Solid: 20mM

Dynamics in the smectic phase

Physica **90A** (1978) 229–244 VEN

DIFFUSION COEFFICIENT FOR A BROWNIAN PARTICLE IN A PERIODIC FIELD OF FORCE

I. LARGE FRICTION LIMIT

Diffusion in Smectic = jumping in 1D periodic potential

So:

Put a guest in the layers

No fit

Longer is faster!

C Host Smectic Phase [mg/mL]

$$D = \frac{RT}{N} \frac{T}{6\pi \eta_0 a}$$

No fit

Longer is faster!

Some conclusions I

Some conclusions I

Vacancy needed to jump

- Diffusion in Smectic = jumping in 1D periodic potential
- Long rods diffuse faster in a smectic layers of Short Host Particles...when size of particle does not fit length scale potential

Flow behavior of isotropic rods

Goal: find connection between mechanical response and orientational ordering

Theory for sheared rods

DEH theory for rods in flow, equation of motion for pdf:

$$\frac{\partial P}{\partial t} = \langle D_r \rangle \mathcal{R} \cdot \{\mathcal{R}P + \beta P \mathcal{R} V_{scP}\} - \mathcal{R} \cdot \{u \times (\Gamma \cdot u)P\}$$
Brownian Motion Flow Field Particle Interaction

Theory for sheared rods: the Smoluchowski

$$\frac{\partial P}{\partial t} = \langle D_r \rangle \mathcal{R} \cdot \{ \mathcal{R}P + \beta P \mathcal{R} V_{scP} \} - \mathcal{R} \cdot \{ u \times (\Gamma \cdot u) P \}$$

 $S(t) = \oint du \ uuP(u;t) = \langle uu \rangle$ Use P(t,u) to calculate the orientational ordering tensor:

S characterised by largest eigenvalue:

$$\max(\operatorname{eig}(S)) = \lambda_1 \sim \langle P_2 \rangle$$

Use S to calculate stress tensor, this is the link!

$$\Sigma = -p I + 2 \eta_S E + 3\rho k_B T \left[S - \frac{I}{3} + \frac{L}{d} \varphi (S^{(4)}: S - S \cdot S) + \frac{1}{6D_r} \left(S^{(4)}: E - \frac{I}{3} S: E \right) \right]$$

$$E = \frac{1}{2}(\vec{\nabla v} + (\vec{\nabla v})^T)$$
 Excluded volume and inverse rotational diffusion $S^{(4)} = \oint duuuuuP(u)$

Stress tensor characterised by viscosity $\eta(S,\gamma) = \Sigma_{21}(S)/\gamma$ Typically plot zero shear viscosity $\eta_0 = \lim \eta \text{ and reduced viscosity } \eta/\eta_0$

Theory for sheared rods: rotational diffusion

$$\frac{\partial P}{\partial t} = \langle D_r \rangle \mathcal{R} \cdot \{ \mathcal{R}P + \beta P \mathcal{R} V_{scP} \} - \mathcal{R} \cdot \{ u \times (\Gamma \cdot u) P \}$$

What is the relevant diffusion coefficient?

$$D_r^0 \sim L \frac{3 \ln(L/d)}{\beta \pi \eta_s L^3}$$

Tube model for isotropic surrounding:

[Doi, Edwards, J. Chem. Soc. Faraday Trans. 2,1978]

$$\ni_{\mathbf{r}} = L^{\mathbf{c}} \mathbf{b}_{\mathbf{r}}^{0} (\rho L^{3})^{-2}$$

Tube dilation for anisotropic surrounding:

$$\langle D_{\rm r} \rangle = c D_{\rm r}^0 \left(\frac{5}{4} \rho L^3 \left(1 - \frac{3}{5} S: S \right) \right)^{-2}$$

3-D SANS on rods

Shear thinning rods: effect of length

Use $\langle P_2(\psi) \rangle$ to scale viscosity

Assumption: shear thinning is caused by orientation

Zero shear viscosity of rods

We determined Teraokes constant! We understand huge L dependence

Understanding shear thinning

$$\partial_t g = D_r \mathcal{R} \cdot [\mathcal{R}g + \beta g \mathcal{R}U] - \mathcal{R} \cdot [gu \times \Gamma \cdot u]$$
$$g \approx \exp[-\beta V] + \dot{\gamma} \delta g^{(1)}$$

Influence stiffness on flow response

Particle flexibility leads to a decrease in zero shear viscosity

The nonlinear viscosity shows the opposite!

Influence stiffness on flow response

We understand zero shear result, but what about high shear result?

Effect of morphology on biaxiality

$$T = \frac{1}{2(2 - \lambda_1(\theta) - \lambda_1(\psi))} \left[\lambda_1(\theta) \lambda_1(\psi) - (\lambda_1(\theta))^2 \right]$$

Lang et al, *Polymers* 2016, **8**, 291

Velocity & ordering profiles of rods

Only very long and flexible rods show hints of shear banding

Some conclusions II

- Understanding zero shear viscosity: now we can do predictions for all stiff systems
- Understanding shear thinning: now we can flow response
- No complete understanding of effect of stiffness

• Need microscopic input, as SANS takes ensemble averages

In situ confocal microscopy on entangled F-actin

$$< L> \approx 20 \ \mu \text{m}, d=7 \ \text{nm}, l_p=17 \ \mu \text{m}$$

- ➤ Use three concentrations, label 1 per 100 filaments
- ➤ About 100 analyzed filaments per combination

Rheological response of F-actin dispersions

0.15 mg/ml100 0.02 mg/ml η [mPa.s] 0.1 0.2 0.3 $\dot{\gamma} [s^{\text{-}1}]$

Strain softening

Shear thinning

Sheared F-Actin in 3-D

Analyze local bending and stretching:

$$\hat{T}_{j} \equiv \frac{\dot{\mathbf{r}}_{j}}{|\dot{\mathbf{r}}_{j}|}; \hat{B}_{j} \equiv \frac{\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}}{|\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}|}; \kappa_{j} = \frac{|\dot{\mathbf{r}}_{j} \times \ddot{\mathbf{r}}_{j}|}{|\dot{\mathbf{r}}_{j}|^{3}}$$

Distribution of curvatures:

Typical examples:

Distribution of angles

Stretched: IV

Bent: III

$$f(\theta,\phi) = a / \left(\left(\frac{\theta - \Delta\theta}{w_{\theta}} \right)^2 + \left(\frac{\phi - \Delta\phi}{w_{\phi}} \right)^2 + 1 \right)$$

Connection between ordering and stress

Some conclusions III

We find the connection between ordering and stress for semi-flexible polymers to stiff rods:

Biggest need:

- ➤ big flaws in theory for sheared rods, no non-linear theory for sheared semi-flexible polymers
- ➤ no good handle on set flow instability

Acknowledgements

KU LEUVEN

FZ Jülich:

Jan Dhont

Chris Lang

Inka Kirchenbüchler

CRPP, Bordeaux:

Eric Grelet

Laura Alvarez

MLZ, Garching:

Aurel Radulescu

PSI, Villigen:

Joachim Kohlbrecher

ILL, Grenoble:

Lionel Porcar

Amolf Amsterdam:

Gijsje Koenderink

F-actin: stiffer and longer

 $< L> \approx 20 \ \mu \text{m}, d=7 \ \text{nm}, l_p=17 \ \mu \text{m}$

Shear banding has been identified by

Kunita et al, PRL 109, 248303 (2012)

Goal: obtain 3-D structural information

Morphological influences on shear flow

Indication of a flexibility dependence of the rotational diffusion coefficient

Influence thickness on flow response

Elongational flow of ideal and semiflexible rods

Trouton ratio = η_e/η Newtonian fluids: $\eta_e/\eta = 3$

Pronounced effect of concentration on elongational viscosity

Rate dependent Trouton ratio reaching rather high values

Results

SAOS and relaxation time spectrum of fdY21M

Obtain the I-N spinodal point

Scale shear rate: $Pe_{eff} = \dot{\gamma}_0/D_R^{eff}$ $\frac{L}{d_{eff}}\varphi_{IN} = 4.2$

 Pe_{eff}

different ordering in different directions: Biaxiality!

Scaling other ordering parameters

• Strong dependence at low shear rate; weak dependence at high shear rate

Characterizing parameters

$$\bar{S}_T = \int_0^\pi \int_0^{2\pi} d\theta d\phi \sin(\phi) f(\theta_T, \phi_T) \hat{T}\hat{T}$$

$$\bar{Q} = \frac{1}{2}(3\bar{S} - \mathbf{I})$$

Biaxiality

$$\bar{Q}_{T,B} = \begin{pmatrix} -\frac{1}{2}\lambda_{T,B} - \eta_{T,B} & 0 & 0\\ 0 & -\frac{1}{2}\lambda_{T,B} + \eta_{T,B} & 0\\ 0 & 0 & \lambda_{T,B} \end{pmatrix}$$

Orientational order parameter

Note: this is the input for calculating stress tensor

Complex flow: Complex fluids

Possible shear thinners

Living gels:

Sprakel et al, Soft Matter, 4, (2008) 1696

Living polymers:

M. P. Lettinga and S. Manneville, Phys. Rev. Lett., 103 2009

Van der Gucht et al Phys. Rev. Lett., 97, (2006) 108301

Stiff Polymers:

Rods:

Experimental input needed:

Information needed:

- Probe the mechanical response of the system.
- Probe the stability of the flow.
- Probe structure *in situ* over broad range of length-scales and time-scales.

Smoluchowski theory for hard rods

Gives equation of motion for the orientational tensor S:

$$\frac{d}{dt}\mathbf{S} = -6D_r \left\{ \mathbf{S} - \frac{1}{3}\hat{\mathbf{I}} + \frac{L}{D}\varphi \left(\mathbf{S}^{(4)} : \mathbf{S} - \mathbf{S} \cdot \mathbf{S} \right) \right\} + \dot{\gamma} \left\{ \hat{\boldsymbol{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\boldsymbol{\Gamma}}^T - 2\mathbf{S}^{(4)} : \hat{\mathbf{E}} \right\}$$

Link with macroscopic stress

$$\Sigma_D = 2\eta_0 \dot{\gamma} \left[\hat{\mathbf{E}} + \frac{(L/D)^2}{3 \ln\{L/D\}} \varphi \times \left\{ \hat{\mathbf{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\mathbf{\Gamma}}^{\mathrm{T}} - \mathbf{S}^{(4)} : \hat{\mathbf{E}} - \frac{1}{3} \hat{\mathbf{I}} \mathbf{S} : \hat{\mathbf{E}} - \frac{1}{\dot{\gamma}} \frac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} \right\} \right]$$

Collective slowing down: Dynamic definition spinodal point

$$D_R^{eff} = D_R^0 \left(1 - \frac{1}{4} \frac{L}{d_{eff}} \varphi \right) \xrightarrow{} \Omega_{eff} = \omega / D_R^{eff}$$

$$\longrightarrow Pe_{eff} = \dot{\gamma}_0 / D_R^{eff}$$

$$D_R^0 : \text{rotational at infinite dilution}$$

Introduction

Brownian motion competes with shear flow:

high viscosity

much lower viscosity

t-SANS to probe segment ordering dynamics

$$\langle P_2(t) \rangle = \frac{\int d\vartheta \sin(\vartheta) f(\vartheta) P_2(\vartheta)}{\int d\vartheta \sin(\vartheta) f(\vartheta)}$$

Orientational distribution function

$$I(t_i, \vec{q}) = \sum_{n}^{Ncycle} I(t_i + n\Delta t, \vec{q})$$

$$f(\theta)$$

Ideal Newtonian fluids

Non-linear Newton: shear thinning fluids

Flow instabilities: shear banding

 ε $\dot{\gamma}_2$ $\dot{\gamma}_1$

