000858908 001__ 858908
000858908 005__ 20210130000132.0
000858908 0247_ $$2doi$$a10.1021/acschemneuro.8b00065
000858908 0247_ $$2pmid$$apmid:29683649
000858908 0247_ $$2WOS$$aWOS:000439531400017
000858908 0247_ $$2altmetric$$aaltmetric:39072904
000858908 037__ $$aFZJ-2018-07744
000858908 082__ $$a540
000858908 1001_ $$00000-0003-0905-7911$$aÖsterlund, Nicklas$$b0
000858908 245__ $$aAmyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects
000858908 260__ $$aWashington, DC$$bACS Publ.$$c2018
000858908 3367_ $$2DRIVER$$aarticle
000858908 3367_ $$2DataCite$$aOutput Types/Journal article
000858908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546497899_1438
000858908 3367_ $$2BibTeX$$aARTICLE
000858908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858908 3367_ $$00$$2EndNote$$aJournal Article
000858908 520__ $$aThe amphiphilic nature of the amyloid-β (Aβ) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aβ(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aβ(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aβ monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aβ aggregation and the peptide interaction with amphiphilic biomolecules.
000858908 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858908 588__ $$aDataset connected to CrossRef
000858908 7001_ $$0P:(DE-HGF)0$$aKulkarni, Yashraj S.$$b1
000858908 7001_ $$0P:(DE-HGF)0$$aMisiaszek, Agata D.$$b2
000858908 7001_ $$00000-0003-4464-1769$$aWallin, Cecilia$$b3
000858908 7001_ $$0P:(DE-HGF)0$$aKrüger, Dennis M.$$b4
000858908 7001_ $$0P:(DE-HGF)0$$aLiao, Qinghua$$b5
000858908 7001_ $$0P:(DE-HGF)0$$aMashayekhy Rad, Farshid$$b6
000858908 7001_ $$0P:(DE-HGF)0$$aJarvet, Jüri$$b7
000858908 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b8
000858908 7001_ $$00000-0001-6836-5610$$aWärmländer, Sebastian K. T. S.$$b9
000858908 7001_ $$0P:(DE-HGF)0$$aIlag, Leopold L.$$b10
000858908 7001_ $$00000-0002-3190-1173$$aKamerlin, Shina C. L.$$b11$$eCorresponding author
000858908 7001_ $$0P:(DE-HGF)0$$aGräslund, Astrid$$b12$$eCorresponding author
000858908 773__ $$0PERI:(DE-600)2528493-9$$a10.1021/acschemneuro.8b00065$$gVol. 9, no. 7, p. 1680 - 1692$$n7$$p1680 - 1692$$tACS chemical neuroscience$$v9$$x1948-7193$$y2018
000858908 8564_ $$uhttps://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf$$yRestricted
000858908 8564_ $$uhttps://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858908 909CO $$ooai:juser.fz-juelich.de:858908$$pVDB
000858908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b8$$kFZJ
000858908 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858908 9141_ $$y2018
000858908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CHEM NEUROSCI : 2017
000858908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858908 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858908 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000858908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858908 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858908 920__ $$lyes
000858908 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000858908 980__ $$ajournal
000858908 980__ $$aVDB
000858908 980__ $$aI:(DE-Juel1)ICS-6-20110106
000858908 980__ $$aUNRESTRICTED
000858908 981__ $$aI:(DE-Juel1)IBI-7-20200312