Home > Publications database > Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects > print |
001 | 858908 | ||
005 | 20210130000132.0 | ||
024 | 7 | _ | |a 10.1021/acschemneuro.8b00065 |2 doi |
024 | 7 | _ | |a pmid:29683649 |2 pmid |
024 | 7 | _ | |a WOS:000439531400017 |2 WOS |
024 | 7 | _ | |a altmetric:39072904 |2 altmetric |
037 | _ | _ | |a FZJ-2018-07744 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Österlund, Nicklas |0 0000-0003-0905-7911 |b 0 |
245 | _ | _ | |a Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects |
260 | _ | _ | |a Washington, DC |c 2018 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1546497899_1438 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The amphiphilic nature of the amyloid-β (Aβ) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aβ(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aβ(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aβ monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aβ aggregation and the peptide interaction with amphiphilic biomolecules. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kulkarni, Yashraj S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Misiaszek, Agata D. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Wallin, Cecilia |0 0000-0003-4464-1769 |b 3 |
700 | 1 | _ | |a Krüger, Dennis M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Liao, Qinghua |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mashayekhy Rad, Farshid |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Jarvet, Jüri |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Strodel, Birgit |0 P:(DE-Juel1)132024 |b 8 |
700 | 1 | _ | |a Wärmländer, Sebastian K. T. S. |0 0000-0001-6836-5610 |b 9 |
700 | 1 | _ | |a Ilag, Leopold L. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Kamerlin, Shina C. L. |0 0000-0002-3190-1173 |b 11 |e Corresponding author |
700 | 1 | _ | |a Gräslund, Astrid |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1021/acschemneuro.8b00065 |g Vol. 9, no. 7, p. 1680 - 1692 |0 PERI:(DE-600)2528493-9 |n 7 |p 1680 - 1692 |t ACS chemical neuroscience |v 9 |y 2018 |x 1948-7193 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:858908 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)132024 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS CHEM NEUROSCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|