001     858908
005     20210130000132.0
024 7 _ |a 10.1021/acschemneuro.8b00065
|2 doi
024 7 _ |a pmid:29683649
|2 pmid
024 7 _ |a WOS:000439531400017
|2 WOS
024 7 _ |a altmetric:39072904
|2 altmetric
037 _ _ |a FZJ-2018-07744
082 _ _ |a 540
100 1 _ |a Österlund, Nicklas
|0 0000-0003-0905-7911
|b 0
245 _ _ |a Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects
260 _ _ |a Washington, DC
|c 2018
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1546497899_1438
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The amphiphilic nature of the amyloid-β (Aβ) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aβ(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aβ(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aβ monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aβ aggregation and the peptide interaction with amphiphilic biomolecules.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kulkarni, Yashraj S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Misiaszek, Agata D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wallin, Cecilia
|0 0000-0003-4464-1769
|b 3
700 1 _ |a Krüger, Dennis M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liao, Qinghua
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mashayekhy Rad, Farshid
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jarvet, Jüri
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 8
700 1 _ |a Wärmländer, Sebastian K. T. S.
|0 0000-0001-6836-5610
|b 9
700 1 _ |a Ilag, Leopold L.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kamerlin, Shina C. L.
|0 0000-0002-3190-1173
|b 11
|e Corresponding author
700 1 _ |a Gräslund, Astrid
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acschemneuro.8b00065
|g Vol. 9, no. 7, p. 1680 - 1692
|0 PERI:(DE-600)2528493-9
|n 7
|p 1680 - 1692
|t ACS chemical neuroscience
|v 9
|y 2018
|x 1948-7193
856 4 _ |u https://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858908/files/acschemneuro.8b00065.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858908
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM NEUROSCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21