

When bigger is faster: how non-commensurability in particle size favors self-diffusion in smectics.

Acknowledgements

Eric Grelet

Laura Alvarez

Dynamics of colloids

Robert Brown

Dynamics of colloids

 $a = 1.5 \mu m$

 $1.0 \, \mu m$

0.5 μm

G.G. Stokes

A. Einstein

Stokes-Einstein: big is slow

$$D = \frac{RT}{N} \frac{1}{6\pi kP} = \frac{k_b T}{6\pi \eta_0 a}$$

J.B. Perrin

Mean square displacement and Self-van Hove function

$$W(t) = \frac{1}{N} \sum_{i=1}^{N} \langle [\mathbf{r}_t^2 - \mathbf{r}_0^2] \rangle$$

Free particles: $=6D_0$

Probability for displacement r during time t:

$$G_s(t) = \frac{1}{N} \sum_{i=1}^{N} \delta[\mathbf{r} - (\mathbf{r}_i(t)) - \mathbf{r}_i(t=0))]$$
$$= (4\pi Dt)^{-3/2} \exp\left(-\frac{r^2}{4Dt}\right)$$

Diffusion is continuous process

Diffusion in complex hosts: colloidal glasses

<u>Diffusion in complex hosts: local probing of the host</u>

Generally: big particles are slower than small particles

Kang et al., J. Chem. Phys. 122, 044905 (2005)

Diffusion in ordered complex hosts

Cascade of phase transitions for rod-like colloids

Top View:

Smectic

S个: free space

Nematic

Goal

Dynamics at increasing degree of ordering Focus:

I-N transition

Smectic

> Size dependence of diffusion in ordered systems

Experimental tool

> Fluorescense Video Microscopy on mono-disperse rods

Model system: bacteriophages

Genetic Modification/different phages:

system	L [μm]	L _p [μm]
fd wild type	0.88	2.8
fd Y21M	0.91	9.9
Pf1	1.96	2.8
M13k07	1.2	2.8

Labelling with red and green dye (ratio 1:104)

M13KO7Dylight550

fdY21M-fdY21MAlexa488

Onsager rod: $\phi_{I-N}=4D_{eff}/L$

MSDs and diffusion rates

Signature increase entropy

Dynamics around I-N transition

Dynamics around I-N transition

Analysis of the **Self-Van Hove function**:

$$Ln(G(z,t)) = a_0 - a_1(\triangle x^2)^{a_2}$$

> I-N transition: glassy to Gaussian

Quantized Brownian motion in smectics

Find jumps in trajectories:

Open: 110 mM

Solid: 20mM

Quantized Brownian motion in smectics

Mean square displacement through layers

DIFFUSION COEFFICIENT FOR A BROWNIAN PARTICLE IN A PERIODIC FIELD OF FORCE

Physica 90A (1978) 229-244

R. FESTA and E. GALLEANI d'AGLIANO

Diffusion in Smectic = jumping in 1D periodic potential

Quantized Brownian motion in smectics: so...

Longer is faster!

$$D = \frac{RT}{N} \frac{1}{6\pi \eta_0 a}$$

Longer is faster!

...when size of particle does not fit length scale potential

$$P(z) \sim \exp[-U_{\text{layer}}(z)/k_BT].$$

Longer is faster!

...when size of particle does not fit length scale potential

Create free accesible volume

Conclusions

Phase Transitions:
Glassy dynamics before transition, Gaussian after transition

Diffusion in smectic phase: Discontinuous, quantized jumps through 1-d periodic potential

Longer not always slower! Particle size helps crossing Smectic Potentials: Not commensurated in the Smectic ordering potentials

Diffusivity parameter

Dynamics at the phase transition: diffusion ratio

Hydro-Dynamics of rod-like colloids

MOUVEMENT BROWNIEN D'UN ELLIPSOIDE (I). DISPERSION DIÉLECTRIQUE POUR DES MOLÉCULES ELLIPSOIDALES

Par Francis PERRIN.

(Institut H. Poincaré et Institut Ed. de Rothschild, Paris).

Sommaire. — Extension de la théorie du mouvement brownien de transistion et de rotation au ces d'une particule ellipsoïdale quelconque. Application à l'étude de la dispersion diélectrique pour des molécules polaires ellipsoïdales en milieu liquide.

F. Perrin, J. Physique, 7, (1934)

Acad.oct.15
Verhandelingen der Koninklijke Nederlandse
Akademie van Wetenschappen, Afdeeling
Natuurkunde / 1
Burgers, J. L.
16. 4: 1938
ON THE MOTION OF SMALL PARTICLES OF ELONGATED FORM.

SUSPENDED IN A VISCOUS LIQUID.

$$D^{\perp} = \frac{D_0}{4\pi} (\ln p \cdot)$$

$$D^{\parallel} = \frac{D_0}{2\pi} (\ln p \cdot)$$

$$D' = \frac{3D_0}{\pi L^2} (\ln p)$$

Dynamics in the columnar phase

Half-jumps!!!

Time scale huge compared to the N and Sm

JÜLICH

Dynamics in the columnar phase

Half-jump in columnar phase: scenario?

Tonks gas...

Effect of stiffness

JÜLICH FORSCHUNGSZENTRUM KULEUVEN

Enhanced Diffusion in layer!

Effect of stiffness

Enhanced Diffusion in layer!

ONIC ACED DODI

Effect of stiffness

Origin of disappearing smectic phase?

N-Sm_{stiff}

Residence time set by potential barrier set by concentration

> Stiff rods diffuse within layer Flexible rods (almost) don 't.

- Anisotropy in diffusion
- Decreases for Stiff rods
- Increase for Flexible rods after N-Sm.

Rotational Diffusion at infinite dilution

Rotational Diffusion in isotropic phase

Effect of flexibility and length in Isotropic Diffusion

Production of the viruses and purification

1. Production

2. Purification

No fit

Longer is faster!

Dynamics of the guest particle: Mean Square Displacement

$$MSD = \frac{1}{N} \sum_{i=1}^{N} |r_i(t) - r_i(0)|^2$$
 $MSD = 2Dt^{\gamma}$

Literature

Patti and Cuentas, ORE, 86, 011403 (2012)

Short-Time Dynamic Signature of the Liquid—Crystal—Glass Transition in a Suspension of Charged Spherical Colloids

P. Holmqvist*

ICS-3, Forschungszentrum Jülich, Postfach 1913, 52425 Jülich, Germany

