000858913 001__ 858913 000858913 005__ 20210130000133.0 000858913 0247_ $$2doi$$a10.1039/9781788013062-00001 000858913 037__ $$aFZJ-2018-07749 000858913 1001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland$$b0$$eCorresponding author 000858913 245__ $$aCHAPTER 1. Introduction to Magnetic Resonance Imaging 000858913 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018 000858913 29510 $$aHybrid MR-PET Imaging / Shah, N Jon (Editor) 000858913 300__ $$a1 - 44 000858913 3367_ $$2ORCID$$aBOOK_CHAPTER 000858913 3367_ $$07$$2EndNote$$aBook Section 000858913 3367_ $$2DRIVER$$abookPart 000858913 3367_ $$2BibTeX$$aINBOOK 000858913 3367_ $$2DataCite$$aOutput Types/Book chapter 000858913 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1553865297_2542 000858913 4900_ $$aNew Developments in NMR 000858913 520__ $$aNuclear magnetic resonance (NMR) is the technique that underpins magnetic resonance imaging (MRI) in its application in diagnostic medical imaging. Spin dynamics in NMR are described using a semi-classical model resulting in a net magnetisation, which is amenable to manipulation using radiofrequency pulses. The introduction of a spatially varying magnetic field, the magnetic field gradient, in the three orthogonal directions is introduced and it is shown how the application of gradients enables the selection of a physical slice and encoding of the two remaining in-plane dimensions. The concept of image encoding is then extended to 3D imaging. Beginning with a simple classical spin model, it is shown how the phenomenological Bloch equations can be derived and solved under the influence of particular field configurations. Eventually, the Bloch equations lead to the so-called signal equation and the introduction of the concept of a reciprocal space, the k-space, which is linked to real space by the Fourier transform (FT). Image reconstruction techniques going beyond the FT are also briefly touched upon to give the reader a fuller appreciation of modern, state-of-the-art MRI. In-plane acceleration methods operating both in k-space and in real space are described, as are multi-band acceleration techniques, which enable the acquisition of multiple slices simultaneously. Finally, a classification scheme, albeit a simple and incomplete one, is presented to enable the novice reader to gain an understanding of how order can be brought into the world of MRI pulse sequences 000858913 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000858913 588__ $$aDataset connected to CrossRef Book Series 000858913 7001_ $$0P:(DE-Juel1)141899$$aYun, S. D.$$b1 000858913 773__ $$a10.1039/9781788013062-00001 000858913 7870_ $$0FZJ-2018-02194$$aShah, N Jon$$dCambridge : Royal Society of Chemistry, 2018$$iIsPartOf$$r$$tHybrid MR-PET Imaging: Systems, Methods and Applications 000858913 8564_ $$uhttps://juser.fz-juelich.de/record/858913/files/9781788013062-00001.pdf$$yRestricted 000858913 8564_ $$uhttps://juser.fz-juelich.de/record/858913/files/9781788013062-00001.pdf?subformat=pdfa$$xpdfa$$yRestricted 000858913 909CO $$ooai:juser.fz-juelich.de:858913$$pVDB 000858913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b0$$kFZJ 000858913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b1$$kFZJ 000858913 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000858913 9141_ $$y2018 000858913 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000858913 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1 000858913 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000858913 980__ $$acontb 000858913 980__ $$aVDB 000858913 980__ $$aI:(DE-Juel1)INM-4-20090406 000858913 980__ $$aI:(DE-Juel1)INM-11-20170113 000858913 980__ $$aI:(DE-82)080010_20140620 000858913 980__ $$aUNRESTRICTED