000858914 001__ 858914
000858914 005__ 20210130000133.0
000858914 0247_ $$2doi$$a10.1002/prot.25525
000858914 0247_ $$2ISSN$$a0887-3585
000858914 0247_ $$2ISSN$$a1097-0134
000858914 0247_ $$2pmid$$apmid:29790608
000858914 0247_ $$2WOS$$aWOS:000446996700004
000858914 0247_ $$2altmetric$$aaltmetric:43615938
000858914 037__ $$aFZJ-2018-07750
000858914 082__ $$a570
000858914 1001_ $$0P:(DE-Juel1)165744$$aPetrović, Dušan$$b0
000858914 245__ $$aHow accurately do force fields represent protein side chain ensembles?
000858914 260__ $$aNew York, NY$$bWiley-Liss$$c2018
000858914 3367_ $$2DRIVER$$aarticle
000858914 3367_ $$2DataCite$$aOutput Types/Journal article
000858914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552635447_21969
000858914 3367_ $$2BibTeX$$aARTICLE
000858914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858914 3367_ $$00$$2EndNote$$aJournal Article
000858914 520__ $$aAlthough the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues.
000858914 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858914 536__ $$0G:(DE-Juel1)jics69_20151101$$aComputational Enzyme Design (jics69_20151101)$$cjics69_20151101$$fComputational Enzyme Design$$x1
000858914 588__ $$aDataset connected to CrossRef
000858914 7001_ $$0P:(DE-Juel1)170073$$aWang, Xue$$b1$$ufzj
000858914 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author$$ufzj
000858914 773__ $$0PERI:(DE-600)1475032-6$$a10.1002/prot.25525$$gVol. 86, no. 9, p. 935 - 944$$n9$$p935 - 944$$tProteins$$v86$$x0887-3585$$y2018
000858914 8564_ $$uhttps://juser.fz-juelich.de/record/858914/files/Petrovi-_et_al-2018-Proteins__Structure%2C_Function%2C_and_Bioinformatics.pdf$$yRestricted
000858914 8564_ $$uhttps://juser.fz-juelich.de/record/858914/files/Petrovi-_et_al-2018-Proteins__Structure%2C_Function%2C_and_Bioinformatics.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858914 909CO $$ooai:juser.fz-juelich.de:858914$$pVDB
000858914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170073$$aForschungszentrum Jülich$$b1$$kFZJ
000858914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000858914 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858914 9141_ $$y2018
000858914 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEINS : 2017
000858914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858914 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858914 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858914 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858914 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858914 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858914 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858914 920__ $$lyes
000858914 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000858914 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000858914 980__ $$ajournal
000858914 980__ $$aVDB
000858914 980__ $$aI:(DE-Juel1)ICS-6-20110106
000858914 980__ $$aI:(DE-82)080012_20140620
000858914 980__ $$aUNRESTRICTED
000858914 981__ $$aI:(DE-Juel1)IBI-7-20200312