000858916 001__ 858916
000858916 005__ 20210130000134.0
000858916 0247_ $$2doi$$a10.1016/j.bbamem.2018.03.026
000858916 0247_ $$2ISSN$$a0005-2736
000858916 0247_ $$2ISSN$$a1879-2642
000858916 0247_ $$2pmid$$apmid:29626441
000858916 0247_ $$2WOS$$aWOS:000442333600013
000858916 0247_ $$2altmetric$$aaltmetric:37810998
000858916 037__ $$aFZJ-2018-07752
000858916 082__ $$a570
000858916 1001_ $$0P:(DE-HGF)0$$aOwen, Michael C.$$b0
000858916 245__ $$aPhysiologically-relevant levels of sphingomyelin, but not GM1, induces a β-sheet-rich structure in the amyloid-β(1-42) monomer
000858916 260__ $$aAmsterdam$$bElsevier$$c2018
000858916 3367_ $$2DRIVER$$aarticle
000858916 3367_ $$2DataCite$$aOutput Types/Journal article
000858916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546499880_1134
000858916 3367_ $$2BibTeX$$aARTICLE
000858916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858916 3367_ $$00$$2EndNote$$aJournal Article
000858916 520__ $$aTo resolve the contribution of ceramide-containing lipids to the aggregation of the amyloid-β protein into β-sheet rich toxic oligomers, we employed molecular dynamics simulations to study the effect of cholesterol-containing bilayers comprised of POPC (70% POPC, and 30% cholesterol) and physiologically relevant concentrations of sphingomyelin (SM) (30% SM, 40% POPC, and 30% cholesterol), and the GM1 ganglioside (5% GM1, 70% POPC, and 25% cholesterol). The increased bilayer rigidity provided by SM (and to a lesser degree, GM1) reduced the interactions between the SM-enriched bilayer and the N-terminus of Aβ42 (and also residues Ser26, Asn27, and Lys28), which facilitated the formation of a β-sheet in the normally disordered N-terminal region. Aβ42 remained anchored to the SM-enriched bilayer through hydrogen bonds with the side chain of Arg5. With β-sheets in the at the N and C termini, the structure of Aβ42 in the sphingomyelin-enriched bilayer most resembles β-sheet-rich structures found in higher-ordered Aβ fibrils. Conversely, when bound to a bilayer comprised of 5% GM1, the conformation remained similar to that observed in the absence of GM1, with Aβ42 only making contact with one or two GM1 molecules. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
000858916 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858916 588__ $$aDataset connected to CrossRef
000858916 7001_ $$0P:(DE-HGF)0$$aKulig, Waldemar$$b1
000858916 7001_ $$0P:(DE-Juel1)140589$$aPoojari, Chetan$$b2
000858916 7001_ $$0P:(DE-HGF)0$$aRog, Tomasz$$b3
000858916 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$eCorresponding author$$ufzj
000858916 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbamem.2018.03.026$$gVol. 1860, no. 9, p. 1709 - 1720$$n9$$p1709 - 1720$$tBiochimica et biophysica acta / Biomembranes Biomembranes [...]$$v1860$$x0005-2736$$y2018
000858916 8564_ $$uhttps://juser.fz-juelich.de/record/858916/files/Physiologically-relevant%20levels%20of%20sphingomyelin%2C%20but%20not%20GM1%2C%20induces%20a%20%CE%B2-sheet-rich%20structure%20in%20the%20amyloid-%CE%B2%281-42%29%20monomer.pdf$$yRestricted
000858916 8564_ $$uhttps://juser.fz-juelich.de/record/858916/files/Physiologically-relevant%20levels%20of%20sphingomyelin%2C%20but%20not%20GM1%2C%20induces%20a%20%CE%B2-sheet-rich%20structure%20in%20the%20amyloid-%CE%B2%281-42%29%20monomer.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858916 909CO $$ooai:juser.fz-juelich.de:858916$$pVDB
000858916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
000858916 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858916 9141_ $$y2018
000858916 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858916 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-BIOMEMBRANES : 2017
000858916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858916 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858916 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858916 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858916 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858916 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858916 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858916 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858916 920__ $$lyes
000858916 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000858916 980__ $$ajournal
000858916 980__ $$aVDB
000858916 980__ $$aI:(DE-Juel1)ICS-6-20110106
000858916 980__ $$aUNRESTRICTED
000858916 981__ $$aI:(DE-Juel1)IBI-7-20200312