001     858917
005     20210130000134.0
024 7 _ |a 10.1098/rstb.2017.0178
|2 doi
024 7 _ |a 0080-4622
|2 ISSN
024 7 _ |a 0264-3839
|2 ISSN
024 7 _ |a 0264-3960
|2 ISSN
024 7 _ |a 0962-8436
|2 ISSN
024 7 _ |a 1471-2970
|2 ISSN
024 7 _ |a 2053-924X
|2 ISSN
024 7 _ |a 2053-9266
|2 ISSN
024 7 _ |a 2054-0280
|2 ISSN
024 7 _ |a pmid:29735732
|2 pmid
024 7 _ |a WOS:000431688500006
|2 WOS
024 7 _ |a altmetric:50483999
|2 altmetric
037 _ _ |a FZJ-2018-07753
082 _ _ |a 570
100 1 _ |a Sengupta, Ushnish
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Markov models for the elucidation of allosteric regulation
260 _ _ |a London
|c 2018
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1546499974_1134
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Allosteric regulation refers to the process where the effect of binding of a ligand at one site of a protein is transmitted to another, often distant, functional site. In recent years, it has been demonstrated that allosteric mechanisms can be understood by the conformational ensembles of a protein. Molecular dynamics (MD) simulations are often used for the study of protein allostery as they provide an atomistic view of the dynamics of a protein. However, given the wealth of detailed information hidden in MD data, one has to apply a method that allows extraction of the conformational ensembles underlying allosteric regulation from these data. Markov state models are one of the most promising methods for this purpose. We provide a short introduction to the theory of Markov state models and review their application to various examples of protein allostery studied by MD simulations. We also include a discussion of studies where Markov modelling has been employed to analyse experimental data on allosteric regulation. We conclude our review by advertising the wider application of Markov state models to elucidate allosteric mechanisms, especially since in recent years it has become straightforward to construct such models thanks to software programs like PyEMMA and MSMBuilder.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 1
|e Corresponding author
773 _ _ |a 10.1098/rstb.2017.0178
|g Vol. 373, no. 1749, p. 20170178 -
|0 PERI:(DE-600)2012979-8
|n 1749
|p 20170178 -
|t Philosophical transactions of the Royal Society of London / B Biological sciences Series B
|v 373
|y 2018
|x 1471-2970
856 4 _ |u https://juser.fz-juelich.de/record/858917/files/Markov%20models%20for%20the%20elucidation%20of%20allosteric%20regulation.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858917/files/Markov%20models%20for%20the%20elucidation%20of%20allosteric%20regulation.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858917
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHILOS T R SOC B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHILOS T R SOC B : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21