

Probing microstructural origin of complex flow behavior

Pavlik Lettinga

UdL, 2nd February 2018

Acknowledgements

Hu Tang Manolis Stiakakis Tatjana Kochetkova

Ideal Newtonian fluids

Non-linear Newton: shear thinning fluids

Flow instabilities: shear banding

 ε $\dot{\gamma}_2$ $\dot{\gamma}_1$

Ideal Newtonian fluids

Non-linear Newton: shear thinning fluids

...or slip e

Possible shear thinners

Living gels:

Sprakel et al, Soft Matter, 4, (2008) 1696

Living polymers:

M. P. Lettinga and S. Manneville, Phys. Rev. Lett., 103 2009

Van der Gucht et al Phys. Rev. Lett., 97, (2006) 108301

Stiff Polymers:

Rods:

Main questions:

Molecular origin of shear band formation:

Can polymer shear band? Can rods shear band?

• Always shear banding for given *m*, or is it system dependent?

Can we tune shear band formation?

Main questions:

Molecular origin of shear band formation:

Can polymer shear band? Can rods shear band?

Rods:

Stiff Polymers:

flexible Polymers:

Probe the stability of flow with

Laser Doppler Velocimetry

Analyse velocity profiles

Account for curvature cell:

Shear banding with interface:

Wall slip:

DNA, the tuneable polymer part I

<L> \approx 20 μ m, d=7 nm, l_p =50 nm

Tune repulsion by adding salt:

concentration: 0.7 mg/ml

Tuning by addition of salt

• Bands disappear at equal thinning m_{fc}

Tuning by addition of salt

- Bands disappear at equal thinning m_{fc}
- Birefringence disappears along with the bands

Tuning by addition of salt

• Bands disappear via widening of the interface

Some conclusions...

- How strong is strong?
- Always shear banding for given *m*, or is it system dependent?

Depends on system

- Suppression shear banding via widening interface, BUT: shear banding can exist with broad interface when $m < m_{fc}$
- Can we tune shear band formation?

Yes, a bit

Also seen for Xanthan, with $m_{fc} = 0.21$ Tang et al, Soft Matter 2018

• Is it charge or stiffness?

It is stiffness because SB observed for neutral PB-PEO micelles Lonetti et al, J. Phys. Rond. Matt. 2011

• New question: Can we force collapse?

DNA, the tuneable polymer part II

Tune attraction by adding T-sensitive brush (PNIPAm)

Tuning by increasing attraction

Tuning by increasing attraction

Diagram of states

- Attraction suppresses shear band formation (and orientation)
- Re-entrant behavior in two directions

Conclusions

• Always shear banding for given *m*, or is it system dependent?

Depends on system

• Suppression shear banding via widening interface, BUT: shear banding can exist with broad interface when $m < m_{fc}$

• How strong is strong?

 $m_{fc} < 0.25$

• Can we tune shear band formation?

YES

• Is it charge or stiffness?

STIFFNESS, but...

Mechanism?

Adams&Olmsted, PRL, 2009

A)
$$\begin{bmatrix} \mathbf{I} + \mathbf{N}(1 + RA) \end{bmatrix} + \mathcal{D}\nabla^2\mathbf{N}$$

$$(\partial_t + \mathbf{v} \cdot \nabla) \mathbf{\Sigma} - (\nabla \mathbf{v}) \cdot \mathbf{\Sigma} - \mathbf{\Sigma} \cdot (\nabla \mathbf{v})^T + \frac{1}{\tau_d} \mathbf{\Sigma} = 2\mathbf{D} - \frac{2}{\tau_R} (1 - A) [\mathbf{I} + \mathbf{\Sigma} (1 + \beta A)] + \mathcal{D} \nabla^2 \mathbf{\Sigma}$$

- Shear banding is suppressed when chain collapses after disentanglement, or alignment supports interface
- Collapse affects the shear-curvature viscosity
- Shear banding is suppressed when system is not long enough

Sheared F-Actin in 3-D

Kirchenbüchler et al Nature Communications 5:5060 (2014)

Entangled DNA

Start up on DNA at different ionic strengths WILEUVEN

Linear rheology on DNA at different ionic strengths

DNA diagram of states

banding results for DNA

banding results for DNA-pnipam

Analysis procedure

Stability of the profile

Away from the banding region

In the banding region

Xanthan... KU LEUVEN

Xanthan... the profiles

Xanthan... the results

Xanthan... the diagram of states

Topological slowing down:

Dois phenomenological rotational diffusion coefficient

$$D_{\rm r} = cD_{\rm r}^0(\nu L^3)^{-2}$$

Monotonic constitutive theory for polymeric liquids

Competition of shear flow with Rouse and reputation time non-monotonic behavior due to concentration coupling

Cromer et al, Phys. Fluids, 2013

Smoluchowski theory for hard rods

Gives equation of motion for the orientational tensor S:

$$\frac{d}{dt}\mathbf{S} = -6D_r \left\{ \mathbf{S} - \frac{1}{3}\hat{\mathbf{I}} + \frac{L}{D}\varphi \left(\mathbf{S}^{(4)} : \mathbf{S} - \mathbf{S} \cdot \mathbf{S} \right) \right\} + \dot{\gamma} \left\{ \hat{\boldsymbol{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\boldsymbol{\Gamma}}^T - 2\mathbf{S}^{(4)} : \hat{\mathbf{E}} \right\}$$

Link with macroscopic stress

$$\Sigma_D = 2\eta_0 \dot{\gamma} \left[\hat{\mathbf{E}} + \frac{(L/D)^2}{3 \ln\{L/D\}} \varphi \times \left\{ \hat{\mathbf{\Gamma}} \cdot \mathbf{S} + \mathbf{S} \cdot \hat{\mathbf{\Gamma}}^{\mathrm{T}} - \mathbf{S}^{(4)} : \hat{\mathbf{E}} - \frac{1}{3} \hat{\mathbf{I}} \mathbf{S} : \hat{\mathbf{E}} - \frac{1}{\dot{\gamma}} \frac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} \right\} \right]$$

Collective slowing down: Dynamic definition spinodal point

$$D_R^{eff} = D_R^0 \left(1 - \frac{1}{4} \frac{L}{d_{eff}} \varphi \right) \longrightarrow \Omega_{eff} = \omega / D_R^{eff}$$

$$\longrightarrow Pe_{eff} = \dot{\gamma}_0 / D_R^{eff}$$

$$D_R^0 : \text{rotational at infinite dilution}$$

Zero shear viscosity of rods

$$D_r = cD_r^0(\nu L^3)^{-2}$$
 = c=3.10³

Velocity profiles of rods

Velocity profile of M13k07 (L=1.2 μ m, L_p=2.2 μ m):

very long and flexible rods show hints of shear banding

Zero shear viscosity of rods

JÜLICH FORSCHUNGSZENTRUM

Shear-banding and hairpin formation

• biaxiality reverses in a small shear rate range after "shear banding"

Lang et al, Polymers, 2016

In situ confocal microscopy on entangled F-actin

- ➤ Use three concentrations, label 1 per 100 filaments
- ➤ About 100 analyzed filaments per combination

Typical examples:

F-actin: stiffer and longer

 $< L> \approx 20 \ \mu \text{m}, d=7 \ \text{nm}, l_p=17 \ \mu \text{m}$

Shear banding has been identified by

Kunita et al, PRL 109, 248303 (2012)

Goal: obtain 3-D structural information

Rheological response of F-actin dispersions

0.15 mg/ml100 0.02 mg/ml η [mPa.s] 0.1 0.2 0.3 $\dot{\gamma} [s^{\text{-}1}]$

Strain softening

Shear thinning

Connection between ordering and stress

Shear experiments on F-Actin

Direct Observation of the Dynamics of Semiflexible Polymers in Shear Flow Harasim et al, PRL, 110 (2013)

Mobility Gradient Induces Cross-Streamline Migration of Semiflexible Polymers
Steinhauser et al, ACS Macroletters, p. 542 (2012)

Ill defined geometries; Infinite dilute; 2-D imaging

Bent:

III

Non-equilibrium isotropic-nematic binodal KULEUVEN

Probe dynamics

Probe dynamics with Large Amplitude Oscillatory Shear

Probe structure with *in situ* scattering methods over broad range of length-scales and time-scales

Experimental input needed:

Information needed:

- Probe the mechanical response of the system.
- Probe the stability of the flow.
- Probe structure *in situ* over broad range of length-scales and time-scales.

We see a reentrant behavior in shear thinning: Far away from I-N —> nothing around I-N but flexible —> shear banding towards ideal rod—> loose it Ideal—> nothing Systems:
high salat DNA/xanathan
low salt DNA/xanthan AND pb-peo
pf1 / F-actin
fd-y21m

Strong shear thinning does not mean that you will get Sms

done:

Open:

effect of salt works different directions, comparing DNA with pf1 How does system sustain orientation after disentanglement?

—> shear rate should now be scaled by local rotation motion and not reptation time.

For the how strong is strong question we have that indeed systems that have m>0.3 don't band Possible reason could be that gamma_high and gamma low are too close to each other.

Suggestion:

stiff rods go into nematic before reaching really high concentration

but

- 0.7% xanthan is not that high
- 0.5 mg/ml DNA also not that high
- 2 mg/ml for pb-Peo

- We see a link between I-N and shear banding

Is it the charge?

Screening charge aids SB for DNA screening charge reduces SB pf1 (if at all)

PbPeo is uncharged.

—> no

But: both very long contour length!

xanthin, DNA and pb-peo are all long. F-actin also.

Is it the length or is it polydispersity?

What tuning tells us:

collateral understanding: understand stiff polymers and rods

- we got hold on shear thinning using new theory and ideal re
- We understand shear thinning stiff polymers. No theory!

Hint:

stress overshoot in LAOS when WLMs are overstretche

PHYSICS OF FLUIDS 25, 051703 (2013)

Shear banding in polymer solutions

Michael Cromer,1,2 Michael C. Villet,3 Glenn H. Fredrickson,1,2,4 and L. Gary Leal1,4,5

Figure 3. Probability density distribution of contour lengths for different molar fractions of DMF (solid line, square for f = 0; dashed line, circle for f = 0.025; dotted line, triangle for f = 0.06). The curves correspond to an exponential distribution with the parameters determined by DLS. The symbols are the data obtained from microscopy.

Merchant and Rill

DNA Phase Transitions

TABLE 1 Lengths, length distributions, and critical concentrations of DNA samples

DNA (bp)	Length* (nm)	Range*		SD§		C;*
		(bp)	(nm)	(bp)	$M_{ m W}/M_{ m n}^{ m q}$	(mg/ml)
147	50	135–162	46–55	±12	1.07	135
170	58	131-210	44–71	±32	1.07	122
336	114	311-355	105-120	±19	1.01	48
570	190	257-1140	87-386	NA	1.23	23
1450	490	766-2400	262-804	±690	1.14	13
8000	2700	4k->23k	1352-7774	NA	ND	13