001     858920
005     20210130000134.0
024 7 _ |a 10.1021/acs.jcim.8b00043
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a pmid:29522682
|2 pmid
024 7 _ |a WOS:000431088000009
|2 WOS
024 7 _ |a altmetric:34157188
|2 altmetric
037 _ _ |a FZJ-2018-07756
082 _ _ |a 540
100 1 _ |a Petrović, Dušan
|0 P:(DE-Juel1)165744
|b 0
|e Corresponding author
245 _ _ |a Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society64160
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552635659_21952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Engineering high chemo-, regio-, and stereoselectivity is a prerequisite for enzyme usage in organic synthesis. Cytochromes P450 can oxidize a broad range of substrates, including macrocycles, which are becoming popular scaffolds for therapeutic agents. However, a large conformational space explored by macrocycles not only reduces the selectivity of oxidation but also impairs computational enzyme design strategies based on docking and molecular dynamics (MD) simulations. We present a novel design workflow that uses enhanced-sampling Hamiltonian replica exchange (HREX) MD and focuses on quantifying the substrate binding for suggesting the mutations to be made. This computational approach is applied to P450 BM3 with the aim to shift regioselectively toward one of the numerous possible positions during β-cembrenediol oxidation. The predictions are experimentally tested and the resulting product distributions validate our design strategy, as single mutations led up to 5-fold regioselectivity increases. We thus conclude that the HREX-MD-based workflow is a promising tool for the identification of positions for mutagenesis aiming at P450 enzymes with improved regioselectivity.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a Computational Enzyme Design (jics69_20151101)
|0 G:(DE-Juel1)jics69_20151101
|c jics69_20151101
|f Computational Enzyme Design
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bokel, Ansgar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Allan, Matthew
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Urlacher, Vlada B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jcim.8b00043
|g Vol. 58, no. 4, p. 848 - 858
|0 PERI:(DE-600)1491237-5
|n 4
|p 848 - 858
|t Journal of chemical information and modeling
|v 58
|y 2018
|x 1549-960X
856 4 _ |u https://juser.fz-juelich.de/record/858920/files/Simulation-Guided%20Design%20of%20Cytochrome%20P450%20for%20Chemo-%20and%20Regioselective%20Macrocyclic%20Oxidation.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858920/files/Simulation-Guided%20Design%20of%20Cytochrome%20P450%20for%20Chemo-%20and%20Regioselective%20Macrocyclic%20Oxidation.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:858920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21