Hauptseite > Publikationsdatenbank > Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation > print |
001 | 858920 | ||
005 | 20210130000134.0 | ||
024 | 7 | _ | |a 10.1021/acs.jcim.8b00043 |2 doi |
024 | 7 | _ | |a 0095-2338 |2 ISSN |
024 | 7 | _ | |a 1520-5142 |2 ISSN |
024 | 7 | _ | |a 1549-9596 |2 ISSN |
024 | 7 | _ | |a 1549-960X |2 ISSN |
024 | 7 | _ | |a pmid:29522682 |2 pmid |
024 | 7 | _ | |a WOS:000431088000009 |2 WOS |
024 | 7 | _ | |a altmetric:34157188 |2 altmetric |
037 | _ | _ | |a FZJ-2018-07756 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Petrović, Dušan |0 P:(DE-Juel1)165744 |b 0 |e Corresponding author |
245 | _ | _ | |a Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation |
260 | _ | _ | |a Washington, DC |c 2018 |b American Chemical Society64160 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552635659_21952 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Engineering high chemo-, regio-, and stereoselectivity is a prerequisite for enzyme usage in organic synthesis. Cytochromes P450 can oxidize a broad range of substrates, including macrocycles, which are becoming popular scaffolds for therapeutic agents. However, a large conformational space explored by macrocycles not only reduces the selectivity of oxidation but also impairs computational enzyme design strategies based on docking and molecular dynamics (MD) simulations. We present a novel design workflow that uses enhanced-sampling Hamiltonian replica exchange (HREX) MD and focuses on quantifying the substrate binding for suggesting the mutations to be made. This computational approach is applied to P450 BM3 with the aim to shift regioselectively toward one of the numerous possible positions during β-cembrenediol oxidation. The predictions are experimentally tested and the resulting product distributions validate our design strategy, as single mutations led up to 5-fold regioselectivity increases. We thus conclude that the HREX-MD-based workflow is a promising tool for the identification of positions for mutagenesis aiming at P450 enzymes with improved regioselectivity. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
536 | _ | _ | |a Computational Enzyme Design (jics69_20151101) |0 G:(DE-Juel1)jics69_20151101 |c jics69_20151101 |f Computational Enzyme Design |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Bokel, Ansgar |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Allan, Matthew |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Urlacher, Vlada B. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Strodel, Birgit |0 P:(DE-Juel1)132024 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jcim.8b00043 |g Vol. 58, no. 4, p. 848 - 858 |0 PERI:(DE-600)1491237-5 |n 4 |p 848 - 858 |t Journal of chemical information and modeling |v 58 |y 2018 |x 1549-960X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858920/files/Simulation-Guided%20Design%20of%20Cytochrome%20P450%20for%20Chemo-%20and%20Regioselective%20Macrocyclic%20Oxidation.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858920/files/Simulation-Guided%20Design%20of%20Cytochrome%20P450%20for%20Chemo-%20and%20Regioselective%20Macrocyclic%20Oxidation.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:858920 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132024 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|