000858921 001__ 858921
000858921 005__ 20210130000134.0
000858921 0247_ $$2doi$$a10.1007/s00232-018-0028-9
000858921 0247_ $$2ISSN$$a0022-2631
000858921 0247_ $$2ISSN$$a1432-1424
000858921 0247_ $$2pmid$$apmid:29550877
000858921 0247_ $$2WOS$$aWOS:000437103200020
000858921 037__ $$aFZJ-2018-07757
000858921 082__ $$a570
000858921 1001_ $$0P:(DE-HGF)0$$aOwen, Michael C.$$b0$$eCorresponding author
000858921 245__ $$aCholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study
000858921 260__ $$aHeidelberg]$$bSpringer$$c2018
000858921 3367_ $$2DRIVER$$aarticle
000858921 3367_ $$2DataCite$$aOutput Types/Journal article
000858921 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546500496_29398
000858921 3367_ $$2BibTeX$$aARTICLE
000858921 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858921 3367_ $$00$$2EndNote$$aJournal Article
000858921 520__ $$aIn an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.
000858921 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000858921 588__ $$aDataset connected to CrossRef
000858921 7001_ $$00000-0001-7568-0029$$aKulig, Waldemar$$b1
000858921 7001_ $$00000-0001-6765-7013$$aRog, Tomasz$$b2
000858921 7001_ $$00000-0001-7408-3214$$aVattulainen, Ilpo$$b3
000858921 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$eCorresponding author
000858921 773__ $$0PERI:(DE-600)1459323-3$$a10.1007/s00232-018-0028-9$$gVol. 251, no. 3, p. 521 - 534$$n3$$p521 - 534$$tThe journal of membrane biology$$v251$$x1432-1424$$y2018
000858921 8564_ $$uhttps://juser.fz-juelich.de/record/858921/files/Cholesterol%20Protects%20the%20Oxidized%20Lipid%20Bilayer%20from%20Water%20Injury%20An%20All-Atom%20Molecular%20Dynamics%20Study..pdf$$yRestricted
000858921 8564_ $$uhttps://juser.fz-juelich.de/record/858921/files/Cholesterol%20Protects%20the%20Oxidized%20Lipid%20Bilayer%20from%20Water%20Injury%20An%20All-Atom%20Molecular%20Dynamics%20Study..pdf?subformat=pdfa$$xpdfa$$yRestricted
000858921 909CO $$ooai:juser.fz-juelich.de:858921$$pVDB
000858921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
000858921 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000858921 9141_ $$y2018
000858921 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858921 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE BIOL : 2017
000858921 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858921 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858921 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858921 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858921 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858921 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858921 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858921 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858921 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858921 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000858921 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858921 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858921 920__ $$lyes
000858921 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000858921 980__ $$ajournal
000858921 980__ $$aVDB
000858921 980__ $$aI:(DE-Juel1)ICS-6-20110106
000858921 980__ $$aUNRESTRICTED
000858921 981__ $$aI:(DE-Juel1)IBI-7-20200312