001     858923
005     20210130000135.0
024 7 _ |a 10.1039/9781788013062-00101
|2 doi
037 _ _ |a FZJ-2018-07759
100 1 _ |a Worthoff, Wieland
|0 P:(DE-Juel1)156200
|b 0
|e Corresponding author
245 _ _ |a CHAPTER 4. Ultra-high Field Imaging
260 _ _ |a Cambridge
|c 2018
|b Royal Society of Chemistry
295 1 0 |a Hybrid MR-PET Imaging / Shah, N Jon (Editor)
300 _ _ |a 101 - 128
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1553865236_2542
|2 PUB:(DE-HGF)
490 0 _ |a New Developments in NMR
520 _ _ |a MR spectroscopy (MRS) reveals information about the molecular structures underlying the MR signal. Properties such as chemical shift and scalar coupling cause a characteristic splitting of the resonance frequencies and following the numerical fitting of the acquired data to the corresponding basis spectra, these shifts can be used to distinguish different kinds of molecules. For in vivo applications, spatial localisation techniques for signal acquisition, such as STEAM or PRESS, and water signal suppression, i.e. CHESS or MEGA, are required. Using non-proton nuclei as target nuclei allows MRI to investigate in vivo metabolic processes and pathology non-invasively. These so-called X-nuclei impose increased technological and methodological demands, as the sensitivity and abundance are significantly lower compared to protons and their spin dynamics might be more sophisticated and complex. Nevertheless, the potential benefit of acquiring such data is tremendous both clinically and in research. The most prominent X-nuclei in vivo are 2H, 7Li, 13C, 17O, 19F, 23Na, 31P, 35Cl and 39K and a subset are discussed here. One of the applications that constitutes a ‘perfect fit’ for ultra-high field imaging is the depiction of brain anatomy. The usual challenges of ultra-high field imaging pertain but once overcome anatomical imaging of the brain is able to produce in vivo images with unprecedented resolution and contrast. The chapter concludes with a brief excursion into ‘emerging applications’ and includes phase and susceptibility imaging, quantitative susceptibility imaging and CEST-based imaging at ultra-high field.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Mauler, J.
|0 P:(DE-Juel1)144215
|b 1
700 1 _ |a Oros-Peusquens, A. M.
|0 P:(DE-Juel1)131782
|b 2
773 _ _ |a 10.1039/9781788013062-00101
787 0 _ |a Shah, N Jon
|d Cambridge : Royal Society of Chemistry, 2018
|i RelatedTo
|0 FZJ-2018-02194
|r
|t Hybrid MR-PET Imaging: Systems, Methods and Applications
856 4 _ |u https://juser.fz-juelich.de/record/858923/files/9781788013062-00101.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858923/files/9781788013062-00101.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858923
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156200
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131782
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21