000858925 001__ 858925
000858925 005__ 20210130000135.0
000858925 0247_ $$2doi$$a10.1039/9781788013062-00147
000858925 037__ $$aFZJ-2018-07761
000858925 1001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b0$$eCorresponding author
000858925 245__ $$aCHAPTER 6. Positron Emission Tomography Instrumentation
000858925 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018
000858925 29510 $$aHybrid MR-PET Imaging / Shah, N Jon (Editor)    
000858925 300__ $$a147 - 161
000858925 3367_ $$2ORCID$$aBOOK_CHAPTER
000858925 3367_ $$07$$2EndNote$$aBook Section
000858925 3367_ $$2DRIVER$$abookPart
000858925 3367_ $$2BibTeX$$aINBOOK
000858925 3367_ $$2DataCite$$aOutput Types/Book chapter
000858925 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1553865194_23697
000858925 4900_ $$aNew Developments in NMR
000858925 520__ $$aThe basic principles of positron emission tomography (PET) systems have not changed since their conception in the mid-1970s. Almost all PET scanners consist of an annular arrangement of multiple scintillation detectors to build an entire ring surrounding the object to be imaged. The scintillation detector, which is the most essential building block of most PET scanners, consists of two key components: the scintillator and the photodetector. Dedicated data acquisition electronics convert charges from the scintillation detectors to digital signals, analyses them, sorts, and then stores them for image reconstruction. This chapter introduces the most important components and building blocks of common PET systems and discusses their performance, their limitations and their underlying physical principles. Further relevant methods for obtaining spatial and temporal information from scintillation detector signals are also briefly discussed. The chapter concludes by presenting the general concepts of typical PET system designs, the most important PET performance parameters and an overview of several representative existing systems.
000858925 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000858925 588__ $$aDataset connected to CrossRef Book Series
000858925 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, U.$$b1
000858925 7001_ $$0P:(DE-Juel1)165812$$aLenz, M.$$b2
000858925 773__ $$a10.1039/9781788013062-00147
000858925 7870_ $$0FZJ-2018-02194$$aShah, N Jon$$dCambridge : Royal Society of Chemistry, 2018$$iRelatedTo$$r$$tHybrid MR-PET Imaging: Systems, Methods and Applications
000858925 8564_ $$uhttps://juser.fz-juelich.de/record/858925/files/9781788013062-00147.pdf$$yRestricted
000858925 8564_ $$uhttps://juser.fz-juelich.de/record/858925/files/9781788013062-00147.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858925 909CO $$ooai:juser.fz-juelich.de:858925$$pVDB
000858925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b0$$kFZJ
000858925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131667$$aForschungszentrum Jülich$$b1$$kFZJ
000858925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165812$$aForschungszentrum Jülich$$b2$$kFZJ
000858925 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000858925 9141_ $$y2018
000858925 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000858925 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000858925 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000858925 980__ $$acontb
000858925 980__ $$aVDB
000858925 980__ $$aI:(DE-Juel1)INM-4-20090406
000858925 980__ $$aI:(DE-Juel1)INM-11-20170113
000858925 980__ $$aI:(DE-82)080010_20140620
000858925 980__ $$aUNRESTRICTED