000858930 001__ 858930
000858930 005__ 20210130000136.0
000858930 0247_ $$2doi$$a10.1039/9781788013062-00229
000858930 037__ $$aFZJ-2018-07766
000858930 1001_ $$0P:(DE-Juel1)159195$$aCaldeira, L.$$b0$$eCorresponding author
000858930 245__ $$aCHAPTER 11. MR-based Corrections for Quantitative PET Image
000858930 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018
000858930 29510 $$aHybrid MR-PET Imaging / Shah, N Jon (Editor)   
000858930 300__ $$a229 - 258
000858930 3367_ $$2ORCID$$aBOOK_CHAPTER
000858930 3367_ $$07$$2EndNote$$aBook Section
000858930 3367_ $$2DRIVER$$abookPart
000858930 3367_ $$2BibTeX$$aINBOOK
000858930 3367_ $$2DataCite$$aOutput Types/Book chapter
000858930 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1553865056_28546
000858930 4900_ $$aNew Developments in NMR
000858930 520__ $$aIn this chapter, we address the correction of positron emission tomography (PET) images using magnetic resonance (MR) information, namely attenuation correction (AC), partial volume correction (PVC) and the arterial input function (AIF). The use of quantitative brain PET imaging is a basic prerequisite in research as well as in the clinical PET environment. Consequently, a reliable attenuation correction method for the PET data is imperative. Here, we describe the attenuation process and provide an outline of several attenuation correction methods, all based on simultaneously acquired MR sequences. When absolute quantification of, e.g., blood flow and metabolism in small anatomical structures is required, the spatial resolution of PET scanners can be a limiting factor. The partial volume effect resulting from the limited spatial resolution is explained and correction methods are presented in this chapter. When the visualisation of kinetic processes, such as cerebral glucose consumption or cerebral blood flow, is required, fully quantitative data can only be acquired with knowledge of the arterial input function. This information can be obtained using MR images, which make it possible to extract exactly the information required. The ways to obtain such a function, the methods to use it and the related uncertainties are also discussed in this chapter.
000858930 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000858930 588__ $$aDataset connected to CrossRef Book Series
000858930 7001_ $$0P:(DE-HGF)0$$aKops, E. Rota$$b1
000858930 7001_ $$0P:(DE-HGF)0$$ada Silva, N. A.$$b2
000858930 7001_ $$0P:(DE-Juel1)131768$$aHerzog, H.$$b3
000858930 773__ $$a10.1039/9781788013062-00229
000858930 7870_ $$0FZJ-2018-02194$$aShah, N. J.$$dCambridge : Royal Society of Chemistry, 2018$$iRelatedTo$$r$$tHybrid MR-PET Imaging: Systems, Methods and Applications
000858930 8564_ $$uhttps://juser.fz-juelich.de/record/858930/files/9781788013062-00229.pdf$$yRestricted
000858930 8564_ $$uhttps://juser.fz-juelich.de/record/858930/files/9781788013062-00229.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858930 909CO $$ooai:juser.fz-juelich.de:858930$$pVDB
000858930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159195$$aForschungszentrum Jülich$$b0$$kFZJ
000858930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000858930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b3$$kFZJ
000858930 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000858930 9141_ $$y2019
000858930 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000858930 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000858930 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000858930 980__ $$acontb
000858930 980__ $$aVDB
000858930 980__ $$aI:(DE-Juel1)INM-4-20090406
000858930 980__ $$aI:(DE-Juel1)INM-11-20170113
000858930 980__ $$aI:(DE-82)080010_20140620
000858930 980__ $$aUNRESTRICTED