001     858930
005     20210130000136.0
024 7 _ |a 10.1039/9781788013062-00229
|2 doi
037 _ _ |a FZJ-2018-07766
100 1 _ |a Caldeira, L.
|0 P:(DE-Juel1)159195
|b 0
|e Corresponding author
245 _ _ |a CHAPTER 11. MR-based Corrections for Quantitative PET Image
260 _ _ |a Cambridge
|c 2018
|b Royal Society of Chemistry
295 1 0 |a Hybrid MR-PET Imaging / Shah, N Jon (Editor)
300 _ _ |a 229 - 258
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1553865056_28546
|2 PUB:(DE-HGF)
490 0 _ |a New Developments in NMR
520 _ _ |a In this chapter, we address the correction of positron emission tomography (PET) images using magnetic resonance (MR) information, namely attenuation correction (AC), partial volume correction (PVC) and the arterial input function (AIF). The use of quantitative brain PET imaging is a basic prerequisite in research as well as in the clinical PET environment. Consequently, a reliable attenuation correction method for the PET data is imperative. Here, we describe the attenuation process and provide an outline of several attenuation correction methods, all based on simultaneously acquired MR sequences. When absolute quantification of, e.g., blood flow and metabolism in small anatomical structures is required, the spatial resolution of PET scanners can be a limiting factor. The partial volume effect resulting from the limited spatial resolution is explained and correction methods are presented in this chapter. When the visualisation of kinetic processes, such as cerebral glucose consumption or cerebral blood flow, is required, fully quantitative data can only be acquired with knowledge of the arterial input function. This information can be obtained using MR images, which make it possible to extract exactly the information required. The ways to obtain such a function, the methods to use it and the related uncertainties are also discussed in this chapter.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Kops, E. Rota
|0 P:(DE-HGF)0
|b 1
700 1 _ |a da Silva, N. A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Herzog, H.
|0 P:(DE-Juel1)131768
|b 3
773 _ _ |a 10.1039/9781788013062-00229
787 0 _ |a Shah, N. J.
|d Cambridge : Royal Society of Chemistry, 2018
|i RelatedTo
|0 FZJ-2018-02194
|r
|t Hybrid MR-PET Imaging: Systems, Methods and Applications
856 4 _ |u https://juser.fz-juelich.de/record/858930/files/9781788013062-00229.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858930/files/9781788013062-00229.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858930
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159195
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131768
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21