000858931 001__ 858931 000858931 005__ 20210130000136.0 000858931 0247_ $$2doi$$a10.1039/9781788013062-00259 000858931 037__ $$aFZJ-2018-07767 000858931 1001_ $$0P:(DE-Juel1)168245$$aBuschbeck, Richard$$b0$$eCorresponding author 000858931 245__ $$aCHAPTER 12. Motion Correction in Brain MR-PET 000858931 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018 000858931 29510 $$aHybrid MR-PET Imaging / Shah, N Jon (Editor) 000858931 300__ $$a259 - 272 000858931 3367_ $$2ORCID$$aBOOK_CHAPTER 000858931 3367_ $$07$$2EndNote$$aBook Section 000858931 3367_ $$2DRIVER$$abookPart 000858931 3367_ $$2BibTeX$$aINBOOK 000858931 3367_ $$2DataCite$$aOutput Types/Book chapter 000858931 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1553865027_25990 000858931 4900_ $$aNew Developments in NMR 000858931 520__ $$aMotion is a frequent problem in magnetic resonance-positron emission tomography (MR-PET) acquisitions, leading to significant degradations of the image quality. This chapter gives an overview of this issue and potential remedies. First, different ways of measuring the intra-scan motion are discussed. This is sub-divided into external device-based PET-based and MR-based motion detection and tracking. Given that MRI-based methods can be relatively fast, they lend themselves to retrospective as well as prospective correction; in retrospective correction the motion information is used to correct flawed k-space data after the scan is completed, i.e. during reconstruction or post-processing, whereas in prospective motion correction the motion information is used to correct the MRI measurement itself in real time while the scan is still running. The goal of prospective correction is to acquire data that are unaffected by any motion that occurs during the measurement. Thereafter, several different motion correction techniques are presented, which are able to counter the negative effects of motion in both MRI and PET. 000858931 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000858931 588__ $$aDataset connected to CrossRef Book Series 000858931 7001_ $$0P:(DE-Juel1)159195$$aCaldeira, L.$$b1 000858931 7001_ $$0P:(DE-Juel1)131791$$aScheins, J.$$b2 000858931 7001_ $$0P:(DE-Juel1)131797$$aTellmann, L.$$b3 000858931 773__ $$a10.1039/9781788013062-00259 000858931 7870_ $$0FZJ-2018-02194$$aShah, N. J.$$dCambridge : Royal Society of Chemistry, 2018$$iRelatedTo$$r$$tHybrid MR-PET Imaging: Systems, Methods and Applications 000858931 8564_ $$uhttps://juser.fz-juelich.de/record/858931/files/9781788013062-00259.pdf$$yRestricted 000858931 8564_ $$uhttps://juser.fz-juelich.de/record/858931/files/9781788013062-00259.pdf?subformat=pdfa$$xpdfa$$yRestricted 000858931 909CO $$ooai:juser.fz-juelich.de:858931$$pVDB 000858931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168245$$aForschungszentrum Jülich$$b0$$kFZJ 000858931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159195$$aForschungszentrum Jülich$$b1$$kFZJ 000858931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b2$$kFZJ 000858931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b3$$kFZJ 000858931 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000858931 9141_ $$y2019 000858931 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000858931 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1 000858931 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000858931 980__ $$acontb 000858931 980__ $$aVDB 000858931 980__ $$aI:(DE-Juel1)INM-4-20090406 000858931 980__ $$aI:(DE-Juel1)INM-11-20170113 000858931 980__ $$aI:(DE-82)080010_20140620 000858931 980__ $$aUNRESTRICTED