001     858931
005     20210130000136.0
024 7 _ |a 10.1039/9781788013062-00259
|2 doi
037 _ _ |a FZJ-2018-07767
100 1 _ |a Buschbeck, Richard
|0 P:(DE-Juel1)168245
|b 0
|e Corresponding author
245 _ _ |a CHAPTER 12. Motion Correction in Brain MR-PET
260 _ _ |a Cambridge
|c 2018
|b Royal Society of Chemistry
295 1 0 |a Hybrid MR-PET Imaging / Shah, N Jon (Editor)
300 _ _ |a 259 - 272
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1553865027_25990
|2 PUB:(DE-HGF)
490 0 _ |a New Developments in NMR
520 _ _ |a Motion is a frequent problem in magnetic resonance-positron emission tomography (MR-PET) acquisitions, leading to significant degradations of the image quality. This chapter gives an overview of this issue and potential remedies. First, different ways of measuring the intra-scan motion are discussed. This is sub-divided into external device-based PET-based and MR-based motion detection and tracking. Given that MRI-based methods can be relatively fast, they lend themselves to retrospective as well as prospective correction; in retrospective correction the motion information is used to correct flawed k-space data after the scan is completed, i.e. during reconstruction or post-processing, whereas in prospective motion correction the motion information is used to correct the MRI measurement itself in real time while the scan is still running. The goal of prospective correction is to acquire data that are unaffected by any motion that occurs during the measurement. Thereafter, several different motion correction techniques are presented, which are able to counter the negative effects of motion in both MRI and PET.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Caldeira, L.
|0 P:(DE-Juel1)159195
|b 1
700 1 _ |a Scheins, J.
|0 P:(DE-Juel1)131791
|b 2
700 1 _ |a Tellmann, L.
|0 P:(DE-Juel1)131797
|b 3
773 _ _ |a 10.1039/9781788013062-00259
787 0 _ |a Shah, N. J.
|d Cambridge : Royal Society of Chemistry, 2018
|i RelatedTo
|0 FZJ-2018-02194
|r
|t Hybrid MR-PET Imaging: Systems, Methods and Applications
856 4 _ |u https://juser.fz-juelich.de/record/858931/files/9781788013062-00259.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858931/files/9781788013062-00259.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858931
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168245
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159195
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131797
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21