000858935 001__ 858935
000858935 005__ 20210130000137.0
000858935 0247_ $$2doi$$a10.1039/9781788013062-00368
000858935 037__ $$aFZJ-2018-07771
000858935 1001_ $$0P:(DE-Juel1)144347$$aWilluweit, A.$$b0$$eCorresponding author
000858935 245__ $$aCHAPTER 19. Preclinical Applications of MR-PET
000858935 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018
000858935 29510 $$aHybrid MR-PET Imaging / Shah, N Jon (Editor)    doi:10.1039/9781788013062
000858935 300__ $$a368 - 378
000858935 3367_ $$2ORCID$$aBOOK_CHAPTER
000858935 3367_ $$07$$2EndNote$$aBook Section
000858935 3367_ $$2DRIVER$$abookPart
000858935 3367_ $$2BibTeX$$aINBOOK
000858935 3367_ $$2DataCite$$aOutput Types/Book chapter
000858935 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1553864860_28546
000858935 4900_ $$aNew Developments in NMR
000858935 520__ $$aCombined magnetic resonance-positron emission tomography (MR-PET), acquired either simultaneously in hybrid scanners or sequentially with standalone machines, offers various applications for preclinical studies. For example, in order to develop new diagnostic tools for translation into the clinic, proof-of-concept studies enable the development and implementation of new hardware components and MRI sequences. New PET tracers and contrast agents can also be applied and cross-validated with either modality. Currently, dual-probes are under development, which synergistically combine the advantages of imaging agents from PET and magnetic resonance imaging. MR-PET is also being implemented more frequently to support the monitoring of preclinical treatment studies for the development of new therapeutic agents and strategies. Further applications of combined MR-PET are multi-modal validation studies of new animal models and analysis of brain function and disease mechanisms, which can be monitored longitudinally.
000858935 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000858935 588__ $$aDataset connected to CrossRef Book Series
000858935 7001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b1
000858935 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, C.$$b2
000858935 773__ $$a10.1039/9781788013062-00368
000858935 7870_ $$0FZJ-2018-02194$$aShah, N. J.$$dCambridge : Royal Society of Chemistry, 2018$$iRelatedTo$$r$$tHybrid MR-PET Imaging: Systems, Methods and Applications
000858935 8564_ $$uhttps://juser.fz-juelich.de/record/858935/files/9781788013062-00368.pdf$$yRestricted
000858935 8564_ $$uhttps://juser.fz-juelich.de/record/858935/files/9781788013062-00368.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858935 909CO $$ooai:juser.fz-juelich.de:858935$$pVDB
000858935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b0$$kFZJ
000858935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b1$$kFZJ
000858935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b2$$kFZJ
000858935 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000858935 9141_ $$y2019
000858935 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000858935 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000858935 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000858935 980__ $$acontb
000858935 980__ $$aVDB
000858935 980__ $$aI:(DE-Juel1)INM-4-20090406
000858935 980__ $$aI:(DE-Juel1)INM-11-20170113
000858935 980__ $$aI:(DE-82)080010_20140620
000858935 980__ $$aUNRESTRICTED