000858953 001__ 858953
000858953 005__ 20230426083204.0
000858953 0247_ $$2doi$$a10.1103/PhysRevB.98.094429
000858953 0247_ $$2ISSN$$a0163-1829
000858953 0247_ $$2ISSN$$a0556-2805
000858953 0247_ $$2ISSN$$a1050-2947
000858953 0247_ $$2ISSN$$a1094-1622
000858953 0247_ $$2ISSN$$a1095-3795
000858953 0247_ $$2ISSN$$a1098-0121
000858953 0247_ $$2ISSN$$a1538-4489
000858953 0247_ $$2ISSN$$a1550-235X
000858953 0247_ $$2ISSN$$a2469-9950
000858953 0247_ $$2ISSN$$a2469-9969
000858953 0247_ $$2Handle$$a2128/21069
000858953 0247_ $$2WOS$$aWOS:000445968300003
000858953 0247_ $$2altmetric$$aaltmetric:34309272
000858953 037__ $$aFZJ-2018-07779
000858953 082__ $$a530
000858953 1001_ $$0P:(DE-HGF)0$$aChatterji, T.$$b0$$eCorresponding author
000858953 245__ $$aHyperfine interaction and electronic spin fluctuation study on Sr_(2 − x)La_xFeCoO_6 ( x = 0, 1, 2) by high-resolution backscattering neutron spectroscopy
000858953 260__ $$aWoodbury, NY$$bInst.$$c2018
000858953 3367_ $$2DRIVER$$aarticle
000858953 3367_ $$2DataCite$$aOutput Types/Journal article
000858953 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546503072_1438
000858953 3367_ $$2BibTeX$$aARTICLE
000858953 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858953 3367_ $$00$$2EndNote$$aJournal Article
000858953 520__ $$aThe study of hyperfine interaction by high-resolution inelastic neutron scattering is not very well known compared to the other competing techniques viz. nuclear magnetic resonance, Mössbauer, perturbed angular correlation spectroscopy, etc. Also, studies have been limited mostly to magnetically ordered systems. Here, we report such a study on Sr2−xLaxFeCoO6 (x=0,1,2) of which the first (Sr2FeCoO6 with x=0) has a canonical spin-glass state, the second (SrLaFeCoO6 with x=1) has a so-called magnetic glass state, and the third (La2FeCoO6 with x=2) has a magnetically ordered ground state. Our present study revealed a clear inelastic signal for SrLaFeCoO6, a possible inelastic signal for Sr2FeCoO6 below the spin freezing temperatures Tsf, but no inelastic signal at all for the magnetically ordered La2FeCoO6 in the neutron-scattering spectra. The broadened inelastic signals observed suggest hyperfine field distributions in the two disordered magnetic glassy systems, whereas the absent inelastic signal for the third compound suggests no, or a very small, hyperfine field at the Co nucleus due to Co electronic moment. The hyperfine splitting on the Co nucleus is induced by the electronic spin state of the magnetic sample atom, and our experiments add information concerning the timescale of electronic spin fluctuations by the appearance of quasielastic broadening in the μeV range at low Q and spin freezing on the nanosecond timescale below Tsf. Whereas these features are observed at low Q for x=0 and 1, they are absent for La2FeCoO6, which evidences a gradual increase of the elastic intensity only at large Q near an emerging Bragg peak. Thus both electronic magnetic spin freezing and inelastic excitations arising from nuclear hyperfine splitting at the Co site consistently indicate a different behavior for x=2.
000858953 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000858953 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000858953 542__ $$2Crossref$$i2018-09-27$$uhttps://link.aps.org/licenses/aps-default-license
000858953 588__ $$aDataset connected to CrossRef
000858953 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000858953 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000858953 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000858953 7001_ $$0P:(DE-HGF)0$$aFrick, B.$$b1
000858953 7001_ $$0P:(DE-Juel1)131056$$aZamponi, M.$$b2$$ufzj
000858953 7001_ $$0P:(DE-HGF)0$$aAppel, M.$$b3
000858953 7001_ $$0P:(DE-HGF)0$$aNair, H. S.$$b4
000858953 7001_ $$0P:(DE-HGF)0$$aPradheesh, R.$$b5
000858953 7001_ $$0P:(DE-HGF)0$$aHariprya, G. R.$$b6
000858953 7001_ $$0P:(DE-HGF)0$$aSankaranarayanan, V.$$b7
000858953 7001_ $$0P:(DE-HGF)0$$aSethupathi, K.$$b8
000858953 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.094429$$bAmerican Physical Society (APS)$$d2018-09-27$$n9$$p094429$$tPhysical Review B$$v98$$x2469-9950$$y2018
000858953 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.094429$$gVol. 98, no. 9, p. 094429$$n9$$p094429$$tPhysical review / B$$v98$$x2469-9950$$y2018
000858953 8564_ $$uhttps://juser.fz-juelich.de/record/858953/files/PhysRevB.98.094429.pdf$$yOpenAccess
000858953 8564_ $$uhttps://juser.fz-juelich.de/record/858953/files/PhysRevB.98.094429.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858953 909CO $$ooai:juser.fz-juelich.de:858953$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000858953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b2$$kFZJ
000858953 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000858953 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000858953 9141_ $$y2018
000858953 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858953 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858953 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000858953 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000858953 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858953 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858953 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858953 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858953 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858953 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858953 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858953 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858953 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858953 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000858953 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000858953 980__ $$ajournal
000858953 980__ $$aVDB
000858953 980__ $$aUNRESTRICTED
000858953 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000858953 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000858953 9801_ $$aFullTexts
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01398035
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01313208
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(99)01435-0
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2011.10.020
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2010.05.050
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/43/436008
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/25/15/156002
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/25/28/286003
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.016405
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.2350
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.2443
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.100404
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3490221
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200500737
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3686137
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2012-30264-2
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aa5470
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4732806
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4978279
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2011.11.090
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(98)01501-4
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4907327
000858953 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2015.04.068