000858985 001__ 858985
000858985 005__ 20240610121040.0
000858985 0247_ $$2doi$$a10.1140/epja/i2018-12671-6
000858985 0247_ $$2ISSN$$a0044-3328
000858985 0247_ $$2ISSN$$a0939-7922
000858985 0247_ $$2ISSN$$a1431-5831
000858985 0247_ $$2Handle$$a2128/21237
000858985 0247_ $$2WOS$$aWOS:000454269400005
000858985 0247_ $$2altmetric$$aaltmetric:48562377
000858985 037__ $$aFZJ-2018-07811
000858985 082__ $$a530
000858985 1001_ $$0P:(DE-HGF)0$$aStellin, Gianluca$$b0$$eCorresponding author
000858985 245__ $$aBreaking and restoration of rotational symmetry in the low energy spectrum of light $ \alpha$α-conjugate nuclei on the lattice I: 8Be and 12C
000858985 260__ $$aHeidelberg$$bSpringer$$c2018
000858985 3367_ $$2DRIVER$$aarticle
000858985 3367_ $$2DataCite$$aOutput Types/Journal article
000858985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577892_31636
000858985 3367_ $$2BibTeX$$aARTICLE
000858985 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858985 3367_ $$00$$2EndNote$$aJournal Article
000858985 520__ $$aThe breaking of rotational symmetry on the lattice for bound eigenstates of the two lightest alpha conjugate nuclei is explored. Moreover, a macroscopic alpha-cluster model is used for investigating the general problems associated with the representation of a physical many-body problem on a cubic lattice. In view of the descent from the 3D rotation group to the cubic group symmetry, the role of the squared total angular momentum operator in the classification of the lattice eigenstates in terms of SO(3) irreps is discussed. In particular, the behaviour of the average values of the latter operator, the Hamiltonian and the inter-particle distance as a function of lattice spacing and size is studied by considering the 0+, 2+, 4+ and 6+ (artificial) bound states of 8Be and the lowest 0+, 2+ and 3− multiplets of 12C.
000858985 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000858985 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000858985 536__ $$0G:(DE-Juel1)jara0015_20130501$$aNuclear Lattice Simulations (jara0015_20130501)$$cjara0015_20130501$$fNuclear Lattice Simulations$$x2
000858985 588__ $$aDataset connected to CrossRef
000858985 7001_ $$0P:(DE-HGF)0$$aElhatisari, Serdar$$b1
000858985 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b2
000858985 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/i2018-12671-6$$gVol. 54, no. 12, p. 232$$n12$$p232$$tThe European physical journal / A$$v54$$x0939-7922$$y2018
000858985 8564_ $$uhttps://juser.fz-juelich.de/record/858985/files/Stellin2018_Article_BreakingAndRestorationOfRotati.pdf$$yRestricted
000858985 8564_ $$uhttps://juser.fz-juelich.de/record/858985/files/1809.06109.pdf$$yOpenAccess
000858985 8564_ $$uhttps://juser.fz-juelich.de/record/858985/files/Stellin2018_Article_BreakingAndRestorationOfRotati.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858985 8564_ $$uhttps://juser.fz-juelich.de/record/858985/files/1809.06109.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858985 909CO $$ooai:juser.fz-juelich.de:858985$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000858985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b2$$kFZJ
000858985 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000858985 9141_ $$y2018
000858985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858985 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858985 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2017
000858985 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858985 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858985 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858985 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858985 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858985 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858985 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858985 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858985 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858985 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000858985 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000858985 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000858985 9801_ $$aFullTexts
000858985 980__ $$ajournal
000858985 980__ $$aVDB
000858985 980__ $$aI:(DE-Juel1)IAS-4-20090406
000858985 980__ $$aI:(DE-Juel1)IKP-3-20111104
000858985 980__ $$aI:(DE-82)080012_20140620
000858985 980__ $$aUNRESTRICTED
000858985 981__ $$aI:(DE-Juel1)IAS-4-20090406