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Abstract

The breaking of rotational symmetry on the lattice for bound eigenstates of the two lightest alpha conjugate

nuclei is explored. Moreover, a macroscopic alpha-cluster model is used for investigating the general

problems associated with the representation of a physical many-body problem on a cubic lattice. In view

of the descent from the 3D rotation group to the cubic group symmetry, the role of the squared total

angular momentum operator in the classification of the lattice eigenstates in terms of SO(3) irreps is

discussed. In particular, the behaviour of the average values of the latter operator, the Hamiltonian and

the inter-particle distance as a function of lattice spacing and size is studied by considering the 0+, 2+, 4+

and 6+ (artificial) bound states of 8Be and the lowest 0+, 2+ and 3− multiplets of 12C.
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1. Preamble

The wealth of available literature on lattice calculations is, perhaps, self-explanatory on the

role that the latter play in the investigation of relativistic field theories and quantum few-body

and many-body systems. After the first study of nuclear matter on the lattice in Ref. [1] in the

framework of quantum hadrodynamics [2], lattice simulations have begun to be employed for sev-

eral other systems involving nuclear matter, fostered by the development of effective field theories

[3, 4] such as Chiral Effective Field Theories (ChEFT) [5, 6, 4].

In the lattice framework, the continuous space-time is discretized and compactified on a hypercubic

box so that differential operators become matrices and the relevant path-integrals are evaluated

numerically. When periodic boundary conditions are imposed in all the space directions, the

whole configuration space is reduced to a three-dimensional torus and translational invariance is

preserved. Nevertheless, the average values of physical observables on the lattice eigenstates will,

in general, depend on the features of the box employed for the description of the physical system

rather than obey to their continuum and infinite-volume counterparts.

Starting from Lüscher’s early works [7, 8, 9], in the last three decades much effort has been devoted

to investigate the finite-volume dependence of physical observables on the lattice, with a special

attention for the energy of bound states.

The original formula connecting the leading-order finite-volume correction for the energy eigenval-

ues to the asymptotic properties of the two-particle bound wavefunctions in the infinite volume in

Ref. [7] has been extended in several directions including non-zero angular momenta [10, 11, 12, 13],

moving frames [13, 14, 15, 16, 17, 18, 19], generalized boundary conditions [20, 21, 22, 23, 26, 24],

particles with intrinsic spin [25, 27] and perturbative Coulomb corrections [28]. In addition,

considerable advances have been made in the derivation of analogous formulas for the energy

corrections of bound states of three-body [29, 30] and N-body systems [31].

While closed expressions for leading-order finite-volume corrections to certain physical observables

already exist, artifacts due to the finite lattice spacing remain more difficult to keep under control.

Nevertheless, systematic schemes for the improvement of discretized expressions of quantities of

physical interest have been developed. In these approaches, correction terms are identified using

continuum language and are added with suitable coefficients, so that corrections up to the desired

order in the lattice spacing vanish.

In the context of field theories, namely Yang-Mills theories, discretization effetcs can be reduced

via the Symanzik improvement program [32, 33, 34, 35, 36]. The latter is based on the systematic

inclusion of higher-dimensional operators into the lattice action, whose coefficients are determined

through a perturbative or nonperturbative matching procedure [36]. A similar approach, reviewed

in the appendix, can be implemented for differential operators applied to wavefunctions, in which

the derivation of the coefficients in front of the corrective terms stems only from algebraic consid-

erations [36], differently from the previous case.

Another consequence of transposing a physical system into a cubic lattice is given by the reduction
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of the rotational symmetry group to the finite group of the rotations of a cube. If the former is

ruled by central forces, the rotation group on three dimensions, SO(3), shrinks into the rotation

subgroup, O, of the octahedral group Oh. Therefore, lattice eigenstates of a few-body Hamilto-

nian cannot be unambiguously classified in terms of irreducible representations of SO(3) or SU(2)

[37]. In the transition between infinitesimal and finite spacing, the 2ℓ + 1-fold degeneracy in the

energies of the members of a multiplet of states transforming according to the same irreducible

representation ℓ of SO(3) reduces to 1-,2- or 3-fold degeneracy, depending on the cubic-group

irreps that appear in the decomposition of the original representation of the rotation group (cf.

Tab. 1 in Sec. 4). In particular, the energy separation between the ensuing O multiplets grows

smoothly with increasing lattice spacings.

This descent in symmetry has been recapitulated in Ref. [37], where the the problem of the iden-

tification of the cubic lattice eigenstates in terms of SO(3) irreps has been first outilined. The

increasing importance of the discretization of the euclidean spacetime in the context of gauge

theories [38, 39, 41] led soon to an extension of Johnson’s work to the case of an hypercubic

lattice [42]. In the meantime, investigations explicitly devoted to rotational symmetry breaking

appeared in the context of scalar λϕ4 [43] and gauge field theories [44, 40] on the lattice. More

recently, quantitative estimations of rotational symmetry breaking have been performed in both

the frameworks in Ref [45] and in Lattice QCD for exotic mesons in Ref. [46], via the construction

of operators with sharply defined angular momentum.

Nevertheless, the restoration of the full rotational invariance on the lattice can be achieved by pro-

jecting the lattice wavefunctions onto angular momentum quantum numbers via the construction

of projectors on SO(3) irreps. The use of such a technique has been firstly reported in Ref. [47],

in the context of cranked Hartree-Fock self-consistent calculations for 24Mg.

However, in the present paper we aim at investigating rotational symmetry breaking in bound

states of 8Be and 12C nuclei on the lattice rather than at removing these effects. At the same

time, the analysis of the low-energy spectra of the two light α-conjugate nuclei provides us an

occasion to highlight the general issues associated to finite volume and discretization in energies,

angular momenta and average interparticle distances.

Since the framework allows for a robust analysis over a wide range of lattice spacings and cubic

box sizes, for the purpose we adopt a simplified description in terms of α particles instead of

individual nucleons, following on the recent literature on the same subject, cf. Refs. [48, 49].

Even if they can explain only a part of the spectra of 4N self-conjugate nuclei, α-cluster models

have strong foundations [50] and influence even in the recent literature [51, 52] and succeeded in

describing certain ground-state properties of this class of nuclei (cf. the linear behaviour of the

binding energy as a function of the number of the bounds between the alpha particles [53]) as

well as the occurrence of decay thresholds into lighter α-conjugate nuclei (cf. the Ikeda diagram

[54, 55]). For a recent review, see Ref. [56].

The interaction between α particles can be realistically described by microscopically based po-

tentials within the method of generator coordinates [57], the resonating group model [58, 59], the
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orthogonality condition model [60], the WKB model of Ref. [61], the energy-density or the folding

model [62]. Alternatively, phenomenological potentials constructed from α − α scattering data,

like the Woods-Saxon ones of Ref. [63] and Ref. [64], or the Gaussian ones of Ref. [65], can be

considered.

Furthermore, our two-body interaction presented in Sec. 2, builds on the work of Ref. [48] and

consists of an isotropic Ali-Bodmer type potential, i.e. a superposition of a positive and a negative-

amplitude Gaussian. The other part of the Hamiltonian operator including the kinetic term is

presented in Secs. 2 and 3.1. Moreover, for the implementation of the second-order derivative

operators of the latter on the lattice, the improvement scheme summarized in Appendix A.1 and

Appendix A.2 has been adopted.

The sought extension of the finite-volume and discretization analysis in Sec. III. A and B of

Ref. [48] to higher angular momentum multiplets has been here achieved through the introduction

of an additional tool, the discretized version of the squared total angular momentum operator. If

the lattice spacing is not too large (e.g. a . 1.5 fm and a . 0.65 fm in the two 8Be configurations

considered in Sec. 7) and the lattice volume is large enough (e.g. L ≡ Na & 18 fm and Na & 12 fm

respectively), the average values of the squared total angular momentum operator on the states

turn out to provide precise information on the SO(3) multiplets to which the eigenstates belong

in the continuum and infinite-volume limit. The capability of the latter operator of drawing this

information also from the lowest energy bound states of 12C is tested and discussed in Sec. 8. A

similar analysis on the bound eigenstates of the 16O nucleus in the same α-cluster model is the

subject of a forthcoming paper.

2. Theoretical framework

2.1. The Hamiltonian

In the phenomenological picture considered here, individual nucleons are grouped into 4He

clusters, that are treated as spinless spherically-charged particles of mass m ≡ m4He subject to

both two-body V II and three-body potentials V III. Therefore, the Hamiltonian of the system

reads

H = − ~2

2m

M
∑

i=1

∇2
i +

∑

i<j

V II(ri, rj) +
∑

i<j<k

V III(ri, rj , rk) . (1)

The global effects of the strong force between two α particles at a distance r are described by the

phenomenological Ali-Bodmer potential,

VAB(r) = V0e
−η2

0
r2 + V1e

−η2
1
r2 , (2)

consisting of a superposition of a long range attractive Gaussian and a short range repulsive one

with the parameters

η−1
0 = 2.29 rm , V0 = −216.3 MeV ,

η−1
1 = 1.89 rm , V1 = −353.5 MeV . (3)
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Moreover, the range parameter of the attractive part of this isotropic Ali-Bodmer potential agrees

with the ones fitting the α−α scattering lengths with ℓ = 0, 2 and 4 to their experimental values

[65], whereas the compatibility of V0 with the best fits of the latter (cf. d′0, d2 and d4 in Ref. [65]) is

poorer (≈ 30 %). As the repulsive part of this potential is strongly angular momentum dependent,

its parameters reproduce within 10% likelihood only the ones for D-wave scattering lengths, d2

[65]. Assuming that the charge distribution of the α-particles is spherical and obeys a Gaussian

law with an rms radius Rα = 1.44 fm [65], the Coulomb interaction between the 4He nuclei takes

the form

VC(r) =
4e2

4πε0

1

r
erf

(√
3r

2Rα

)

. (4)

in terms of the error function, erf(x) = (1/
√
π)· ·

∫ x
x e−t2dt. The three-body term of the Hamilto-

nian, V III, consists of a Gaussian attractive potential,

VT (rij , rjk, rik) = V0e
−λ(r2ij+r2jk+r2ik) , (5)

whose range λ = 0.005 fm−2 and amplitude parameters V0 = −4.41 MeV were originarily fit-

ted to reproduce, respectively, the binding energy of the 12C and the spacing between the Hoyle

state, i.e. the 0+2 at 7.65 MeV and 2+1 one at 4.44 MeV [66] of the same nuclide in the case

the original angular momentum dependent Ali-Bodmer potential, i.e. a superposition of three

pairs of Gaussians of the form (2) with parameters d′0, d2 and d4 [65], was adopted. However,

in the present case, the three pairs of quadratic exponentials, corresponding to the best fitting

potentials for the S, D and G-wave α− α scattering amplitudes [65], have been resummed into a

single pair of Gaussians that adjusts the zero of the energy on the Hoyle state rather than on the

3α decay threshold. Since the spacing between the latter two is experimentally well-established,

the possibility of reproducing the binding energy of the nucleus still remains.

3. Operators on the lattice

Now, let us construct the operators of physical interest acting on a discretized and finite

configuration space, i.e. a lattice with N points per dimension and spacing a.

3.1. Kinetic energy

Applying the many-body kinetic energy operator

T = − ~2

2m

M
∑

i=1

∇2
i (6)

on the most general many-body wavefunction

Ψ(r1, r2, ...rM ) = 〈Ψ|r1, r2, ...rM 〉 (7)
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by imposing periodic boundary conditions, we can switch to the momentum space via the discrete

Fourier transform of the lattice ladder operators,

T̂ =

M
∑

i=1

∑

pi∈N

a†i (pi)Tpiai(pi) . (11)

Therefore, we can extract the analytical expression of the eigenvalues of a system of free particles

from the original expression of T̂ in configuration space (cf. Eq. (9)),

Tpi =
~2

2m

∑

α∈
x,y,z

K
∑

k=1

C
(2P,K)
k [2− cosh (k pi,α)] (12)

(cf. Fig. 3.1). From the final form of lattice dispersion relation in Eq. (12), we can conclude that

Galilean invariance is broken on the lattice, since the dependence of the former on the pi’s is not

quadratic [67].

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

px

2m
T
(p

x
)/
~
2

continuum
K = 4
K = 3
K = 2
K = 1

Figure 2: Behaviour of the ein-
genvaules of a free particle in one
dimension, x, as function of the
lattice momentum px for four dif-
ferent values of the second deriv-
ative improvement index and unit
spacing. For increasing values of
K the eigenvalues of T (px) ap-
proach the continuum ones with
increasing likelihood.

The extent of the configuration space and the dimension of the corresponding kinetic energy

matrix, whose elements are

T (a)
r,r′ ≡ 〈r1, r2, ...rM |T̂ |r′1, r′2, ...r′M 〉 (13)

in the absolute basis of states 1,

|n1,n2, ...nM 〉 =
M
∏

i=1





∑

pi∈N

e−ini·pi



 |p1,p2, ...pM 〉 , (14)

can be reduced from N3M to N3M−3 by singling out the center of mass motion of the M alpha

particles. Accordingly, we introduce the following non-orthogonal transformation into relative

coordinates

rjM ≡ rj − rM rCM =

M
∑

i=1

ri

M
j = 1, 2, ...M − 1 (15)

1Notice that dimensionless position vectors ni, such that ri = ani, have been introduced.
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together with the associated basis of Fock states,

|n1M ,n2M , ...nM−1M ,nCM 〉 =
M−1
∏

i=1





∑

piM∈N

e−iniM ·piM



·e−inCM ·pCM |p1M ,p2M , ...,pM−1M ,pCM 〉 .

(16)

Therefore, the matrix elements of the kinetic energy operator in the relative basis just introduced

become

T (r)
n,n′ ≡ 〈n1M ,n2M , ...nCM |T̂ |n′

1M ,n′
2M , ...,n′

CM 〉 = − ~2

2ma2

∑

α

K
∑

l=−K
l 6=0

C
(2P,K)
|l| ×

[−〈n1M ,n2M , ...nCM |n′
1M ,n′

2M , ...n′
CM 〉+ 〈n1M , ...nCM |n′

1M + leα,n
′
2M , ...n′

CM + leα/M〉

+〈n1M , ...nCM |n′
1M ,n′

2M + leα, ...n
′
CM + leα/M〉+ · · ·+ 〈n1M , ...nCM |n′

1M , ...n′
M−1M + leα,n

′
CM + leα/M〉

+〈n1M , ...nCM |n′
1M + leα,n

′
2M + leα, ...n

′
CM − leα(M − 1)/M〉] .

(17)

Replacing the brakets with the pertinent Kronecker deltas, we finally obtain

T (r)
n,n′ = − ~2

2ma2

∑

α

K
∑

l=−K
l 6=0

C
(2P,K)
|l|

[

δ
nCM ,n′

CM−leα
M−1

M

(

M−1
∏

i=1

δniM ,n′
iM+leα

)

−δnCM ,n′
CM

M−1
∏

i=1

δniM ,n′
iM

+ δ
nCM ,n′

CM+leα
1

M

M−1
∑

i=1

δniM ,n′
iM+leα

M−2
∏

j=1
j 6=i

δnjM ,n′
jM









.

(18)

Choosing a reference frame in which the center of mass is at rest (i.e. pCM = 0), the matrix

elements of T̂ become independent on the position of the center of the nucleus and the relevant

deltas can be dropped from the last formula, thus

T (r,0)
n,n′ ≡ 〈n1M ,n2M , ...nCM |T̂ |n′

1M ,n′
2M , ...,n′

CM 〉p
CM

=0

= − ~2

2ma2

∑

α

K
∑

l=−K
l 6=0

C
(2P,K)
|l|









M−1
∏

i=1

δniM ,n′
iM+leα −

M−1
∏

i=1

δniM ,n′
iM

+

M−1
∑

i=1

δniM ,n′
iM+leα

M−2
∏

j=1

j 6=i

δnjM ,n′
jM









.

(19)

After the reduction of the system to N3M−3 degrees of freedom, one may wonder whether the

matrix elements of T (r) are invariant when the coordinate change (cf. Eq. (15)) is performed

before the discretization of T (cf. Eq. (8)). The answer to this point is negative and the reason

can be traced back to the non-orthogonality of the transformation into relative coordinates (cf.

Eq. (15)). Denoting the latter as r′i ≡ riM for i < M and r′M ≡ rCM and computing the Jacobian
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matrix of the transformation, J,

J ≡

























1 0 . . . . . . 0 −1

0 1 0 . . . 0 −1
...

. . .
. . .

. . .
...

...

0 . . . 0 1 0 −1

0 . . . . . . 0 1 −1

1/M 1/M . . . . . . . . . 1/M

























, (20)

the resulting kinetic energy operator, in fact, is non-diagonal in the particle space,

T = − ~2

2m

M
∑

i,j,k=1

J
−1
ji J

−1
ki ∇′

j · ∇′
k . (21)

It is exactly the presence of different kinds of differential operators, namely pure and mixed second

derivatives, that prevents the final rewriting of the matrix elements of Eq. (20), after the can-

cellation of the center of mass momentum, to be consistent with Eq. (19). Nevertheless, the

equivalence between the latter two can be approached in the large volume and small lattice spa-

cing limit (L ≡ Na ≥ 18 fm).

Eventually, if Jacobi coordinates instead of the relative ones in Eq. 15 were adopted, the co-

ordinate transformation should have been effected before the discretization of T (cf. Eq. (8)).

The application of T in absolute coordinates on the transformed basis of states, in fact, would

have generated fractional displacements on both the CM coordinates and in all the other relat-

ive ones, thus implying the existence of nonzero matrix elements between non-existing lattice sites.

3.2. Potentials

Unlike the kinetic term, the definition of the lattice counterpart of the potentials (3) and (5)

is straightforward, due to their locality and independence on spatial derivatives.

3.3. Angular momentum

An crucial role in the analysis that follows is played by the square of the collective angular

momentum operator, L2
tot, whose importance resides in the identification of the multiplets of

eigenstates of the lattice Hamiltonian that share the same orbital quantum number and the same

energy in the continuum limit.

Differently from the previous case, the functional form of this operator is left invariant by linear

transformations of the coordinates J,

Ltot,α =
M
∑

i=1

Li,α = −i~ǫαβγ

M
∑

i=1

βi

∂

∂γi
= −i~ǫαβγ

M
∑

i,j,k=1

J
−1
ij Jkiβ

′
j

∂

∂γ′
i

= −i~ǫαβγ

M
∑

j,k=1

δkjβ
′
j

∂

∂γ′
i

=
M
∑

i=1

L′
i,α ,

(22)

10



where α, β, γ ∈ x, y, z, ǫαβγ is the Levi-Civita tensor with ǫxyz = 1 and summations over repeated

greek indexes are understood. Accordingly, the square of the collective angular momentum oper-

ator can be written irrespectively of the coordinate system as

L2
tot = 2

∑

i<j

Li · Lj +
∑

i

L2
i = −~

2
∑

β,γ

∑

i<j

(2βiβj
∂2

∂γi∂γj
− 2βiγj

∂2

∂βj∂γi

)

− ~
2
∑

β,γ

∑

i

(

β2
i

∂2

∂γ2i
− γi

2

3

∂

∂γi
− γiβi

∂2

∂βi∂γi

)

.

(23)

Since all the contributions from the second-derivative terms with β = γ on the right hand side of

Eq. (23) vanish, each of the first three terms on the same side of the formula is hermitian. On

the other hand, this property is not fulfilled by the remaining two terms unless they are summed

together.

Applying the improvement scheme outlined in Appendix A.1 with index K, the subsequent

discretization of the γi∂/∂γi term of one-body part of Eq. (23) gives

L2
i

∣

∣

∣

1
≡ 2~2

∑

ni∈N

∑

γ

K
∑

k=1

C
(1,K)
k (ni)γ

[

a†i (ni + keγ)ai(ni)− a†i (ni − keγ)ai(ni)
]

, (24)

whereas the one of the remaining one-body part of the same operator gives

L2
i

∣

∣

∣

2
≡ −~

2
∑

ni∈N

∑

β 6=γ

K
∑

k=1

C
(2M,K)
k

{

4(ni)
2
β [−2a†

i (ni)ai(ni) + a†
i (ni + keγ)ai(ni) + a†

i (ni − keγ)ai(ni)]−(ni)β(ni)γ

× [a†
i (ni + keβ + keγ)ai(ni) + a†

i (ni − keβ − keγ)ai(ni)− a†
i (ni + keβ − keγ)ai(ni)− a†

i (ni − keβ + keγ)ai(ni) ]
}

.

(25)

Before introducing the ladder operators, all the diagonal terms in the greek indexes of this part

of L2
tot have been ruled out: the presence of two different kinds of differential operators prevents,

in fact, the cancellation of one half of the hopping terms coming from the second pure and mixed

derivatives. For what concerns the two-body part of Eq. (23), the discretization process gives

Li · Lj

∣

∣

∣

1
= −~

2
∑

ni,nj∈N

∑

β,γ

K
∑

k=1

C
(2M,K)
k (ni)β(nj)β

·
[

a†i (ni + keγ)a
†
j(nj + keγ)aj(nj)ai(ni) + a†i (ni − keγ)a

†
j(nj − keγ)aj(nj)ai(ni)

−a†i (ni + keγ)a
†
j(nj − keγ)aj(nj)ai(ni)− a†i (ni − keγ)a

†
j(nj + keγ)aj(nj)ai(ni)

]

(26)

and

Li · Lj

∣

∣

∣

2
= ~

2
∑

ni,nj∈N

∑

β,γ

K
∑

k=1

C
(2M,K)
k (ni)β(nj)γ

·
[

a†i (ni + keγ)a
†
j(nj + keβ)aj(nj)ai(ni) + a†i (ni − keγ)a

†
j(nj − keβ)aj(nj)ai(ni)

−a†i (ni + keγ)a
†
j(nj − keβ)aj(nj)ai(ni)− a†i (ni − keγ)a

†
j(nj + keβ)aj(nj)ai(ni)

]

.

(27)
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Due to the invariance of L2
tot, we are allowed to apply the square of the collective angular mo-

mentum operator in relative coordinates to the relative basis of states (cf. Eq. (15)), exploiting

the results already presented (cf. Eqs. (26)-(25)). The subsequent cancelation of center of mass

momentum, p
CM

= 0, yields finally the expression of the matrix element of the operator in the

N3M−3 ×N3M−3 lattice,

L
′2 (r,0)
n,n′ =

∑

i

〈n1M . . .nCM |L′2
i |n′

1M . . .n′
CM 〉p

CM
=0

+ 2
∑

i<j

〈n1M . . .nCM |L′
i · L′

j |n′
1M . . .n′

CM 〉p
CM

=0 ,

(28)

where the one-body contribution is given by

〈n1Mn2M . . .nCM |L′2
i |n′

1Mn′
2M . . .n′

CM 〉p
CM

=0 = −~
2
∑

β 6=γ

K
∑

k=1

C
(2M,K)
k







M−1
∏

l=1
l 6=i

δn′
lM ,nlM







×
[

4(niM )2β ×
(

−2δniM ,n′
iM

+ δniM ,n′
iM+keγ + δniM ,n′

iM−keγ

)

−
4a

3
(niM )γ

(

δniM ,n′
iM+keγ − δniM ,n′

iM−keγ

)

−(niM )β(niM )γ
(

δniM ,n′
iM+keβ+keγ + δniM ,n′

iM−keβ−keγ − δniM ,n′
iM−keβ+keγ − δniM ,n′

iM+keβ−keγ

)]

.
(29)

and the two-body one coincides with

〈n1Mn2M . . .nCM |L′
i · L′

j |n′
1Mn′

2M . . .n′
CM 〉p

CM
=0 = −~

2
∑

β,γ

K
∑

k=1

C
(2M,K)
k







M−1
∏

l=1
l 6=i 6=j

δn′
lM ,nlM







×
[

(niM )β(njM )β
(

δniM ,n′
iM+keγδnjM ,n′

jM+keγ + δniM ,n′
iM−keγδnjM ,n′

jM−keγ

−δniM ,n′
iM−keγδnjM ,n′

jM+keγ − δniM ,n′
iM+keγδnjM ,n′

jM−keγ

)

−(niM )β(njM )γ
(

δniM ,n′
iM+keγδnjM ,n′

jM+keβ + δniM ,n′
iM−keγδnjM ,n′

jM−keβ

−δniM ,n′
iM−keγδnjM ,n′

jM+keβ − δniM ,n′
iM+keγδnjM ,n′

jM−keβ

)]

.
(30)

Like in the previous case, the application of the discretized version of this operator in absoulte

and relative (i.e. primed) coordinates to the relative basis, even if followed by the cancelation of

the center of mass momentum, gives rise to two unequal results, namely

L2 (r,0)
n′,n 6= L

′2 (r,0)
n′,n . (31)

respectively. This is a consequence of the discretization of the one-body terms containing second

mixed and pure derivatives (cf. Eq. (23)), that transform together under linear coordinate changes.

As observed, also the cancellation of diagonal terms in the Greek indexes in the summations for

the one-body terms of L2
tot (i.e. the ones with β = γ in the third line of Eq. (23)), that are

straightforward in the continuum, does not occur in the lattice. Nevertheless, in the large volume

and small lattice spacing limit, the average values of the squared collective angular momentum
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operator calculated in the two approaches (cf. Eq. (31)) coincide, as expected in the case of the

kinetic energy operator.

Besides this inequality, another feature of the discretized version of L2
tot is the loss of hermiticity,

due again to the last two terms of the one-body part (cf. Eq. (23)) whose sum is self-adjoint only

in the continuum.

4. Symmetries

Let us begin the analysis of the transformation properties of the Hamiltonian under spacetime

symmetries. Since the potentials depend only on interparticle distances, Eq. (1) is invariant under

parity, P,

[H,P] = 0 , (32)

a feature that is preserved by its realization on the cubic lattice. This invariance allows for the

construction of projectors to the two irreducible representations, + and −, of the parity group

(≈ C2),
P± = 1± P (33)

acting on continuum (and lattice) eigenfunctions of H (resp. H), that can thus bear the two irrep

labels. Moreover, the implementation of the reducible 3M − 3 dimensional representation of the

inversion operator on the lattice, P, omitted in the last section, depends on the choice of the map

between lattice points niM and the physical points on R3.

Furthermore, the Hamiltonian of a system of M particles interacting with central forces is rota-

tionally invariant,

[H,Ltot] = 0 and [H,L2
i ] = 0 (34)

with i = 1, 2, ...M . Switching to the relative reference frame, cf. Eq. (14), and setting the center

of mass momentum to zero, H|pCM=0≡ Hr, this invariance is naturally preserved, but the relative

squared angular momentum operator L2
iM ≡ (L

′

i)
2 of each of the particles no longer commutes

with the relative Hamiltonian, due to the non-orthogonality of the linear transformation, J, to the

relative reference frame, cf. Eq. (20),

[Hr, (L
′

i)
2] 6= 0 (35)

where i = 1, 2, ...M−1. Therefore, continuum eigenstates of Hr can be labeled with the eigenvalues

of the (squared) collective angular momentum, quadratic Casimir operator of SO(3), and by the

ones of its third component, Ltot,z, Casimir of the group of rotations on the plane,

SO(3) ⊃ SO(2)

↓ ↓
ℓ m ,

(36)

i.e. as basis of the 2ℓ + 1 dimensional irreducible representation of SO(3) and eigenstates of

rotations about the z axis. However, the discretized Hamiltonian on the cubic lattice does not

13



inherit this symmetry, being left invariant only by a subset of SO(3), forming the cubic group,

O, of order 24 and isomorphic to the permutation group of four elements, S4. Equivalently,

the dependence of the collective angular momentum on spatial derivatives and, therefore, the

necessisity of resorting to an approximation scheme, prevents its commutation with the lattice

Hamiltonian.

Nevertheless, like in the previous case, the basis vectors of each irrep of O can be chosen to be

simultaneously diagonal with respect to a subset of its operations. Considering again the z axis,

the set generated by a counterclockwise rotation of π/2, R
π/2
z , forms an abelian group, isomorphic

to the cyclic group of order four, C4 2. Since its complex 1-dimensional inequivalent irreps are four

and the distinct eigenvalues of R
π/2
z are ±1 and ±i, we can label the irreducible representations

of C4 with the integers Iz ranging from 0 to three,

Rπ/2
z = exp

(

−i
π

2
Iz

)

. (37)

Diagonalizing the lattice Hamiltonian together with R
π/2
z ,

(H+ R
π/2
z )Ψ = (E +Rπ/2

z )Ψ , (38)

the simultaneous eigenstates Ψ can be denoted, thus, with the irreducible representations of O
and C4 (i.e. quantum numbers)

O ⊃ C4
↓ ↓
Γ Iz ,

(39)

where Γ ∈ A1, A2, E, T1 and T2. Due to this descent in symmetry, each of the original 2ℓ + 1

degenerate eigenstates of H is split into smaller multiplets, their dimension ranging from one to

three (cf. Tab. 1).

Γ D0 D1 D2 D3 D4 D5 D6 D7 D8

A1 1 0 0 0 1 0 1 0 1
A2 0 0 0 1 0 0 1 1 0
E 0 0 1 0 1 1 1 1 2
T1 0 1 0 1 1 2 1 2 2
T2 0 0 1 1 1 1 2 2 2

Table 1: Coefficients of the decomposition of the representations of the spherical tensors of rank 2ℓ + 1, Dℓ into
irreps of the cubic group. These can be obtained by repeated application of the Great Orthogonality Theorem for
characters to the 2ℓ+ 1-dimensional representations of SO(3) and the irreps of O.

As in the case of parity, by expressing the cubic group elements g as terns of Euler angles,

(α, β, γ), it is possible to construct projectors on the irreps of O for spherical tensors of rank 2ℓ+1

2Like SO(2) with SO(3), also C4 is not a normal subgroup of O, as the conjugacy classes 3C2
4 (π) and 6C4(π/2)

of the latter are only partially included in the cyclic group.
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[68],

P 2ℓ+1
Γ =

∑

g∈O

χΓ(g)D
ℓ(g) , (40)

where the Dℓ(g) are Wigner D-matrices, Dℓ
mk(α, β, γ), and χΓ(g) are characters of the irrep Γ

of the cubic group. It is exactly from the columns (resp. rows) of the projector matrix that

cubic basis vectors (resp. tensors) from spherical basis vectors (resp. tensors) can be constructed

[69]. Nevertheless, when the same irrep of O appears more then once in the decomposition of Dℓ

(cf. Tab. 1) further rearrangement on the outcoming linear combinations is needed (cf. Appendix

A.2). Moreover, only tensors or basis vectors having the same projection of the angular momentum

along the z axis, m, modulo 4 mix among themselves when projected to any cubic group irrep.

Eventually, we conclude the paragraph with particle space symmetries. Since both the relative

and the full Hamiltonian commute with the permutation operators of M particles,

[H,Sg] = [Hr,Sg] = 0 , (41)

where g ∈ SM , the permutation group of M elements represents a symmetry for the system.

Since the representatives of the sequences of transpositions, Sg does not affect the configuration

space on which O and P act, they naturally commute with the elements of the space-time

symmetry groups. In the 8Be case, where two particle transposition (12) coincides with parity,

the latter assertion is ensured by means of commutation between rotations and space inversion. As

a consequence, whenever the states does not transform according to the bosonic representations,

... ∼ [M] , (42)

or the fermionic ones,

... ∼ [1M] , (43)

they appear in the energy spectrum as repeated degenerate cubic group multiplets, their multipli-

city being equal to the dimension of the irrep of SM to which they belong. It follows that Young

diagrams or partitions can be included among the labels of the simultaneous eigenstates Ψ (cf.

Eq. (38)). Due to the bosonic nature of the α-particles, the construction of the projector on the

completely symmetric irrep of the permutation group,

P
...

=
∑

g∈SM

χ
...

(g)Sg =
∑

g∈SM

Sg , (44)

turns out to be useful in the computation of the numerical eigenstates of the lattice Hamiltonian

Hr, see Sec. 5.1, since unphysical eigenstates of parastatistic or fermionic nature are filtered out. In

analogous way the projectors to all the other irreducible representations of SM can be constructed.
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5. Physical Observables

5.1. Space coordinates

The computation of matrix elements of lattice operators in the configuration-space represent-

ation requires the replacement of the lattice coordinates nnM,α introduced in Sec. 3.1 by their

physical counterpart (rnM,α)phys. This is the case of the collective squared angular momentum

operator (cf. Eqs. (28)-(30)) and V II and V III terms of the Hamiltonian which are diagonal in the

3M − 3 dimensional configuration space, due to the absence of velocity-dependent potentials.

Therefore, it is necessary to define a map between lattice points and the physical coordinates. If

we encode the former by an unique positive integer index r, ranging from 0 to N3M−3 − 1, the

lattice coordinates nnM,α are can be extracted from r via the modulo function,

nnM,x = mod
(⌊ r

Nn

⌋

, N
)

nnM,y = mod
(⌊ r

Nn+1

⌋

, N
)

nnM,z = mod
(⌊ r

Nn+2

⌋

, N
)

(45)

with n ∈ 1, 2, . . .M − 1. An invertible map from the latter to physical coordinates is provided

by

(rnM,α)phys =







annM,α if nnM,α < N/2

a (nnM,α −N) if nnM,α ≥ N/2
(46)

where the lattice spacing a is treated here as a dimensional parameter, expressed in femtometres.

The three-dimensional configuration space is, thus, reduced to a cubic finite set of points encom-

passing the origin, which is centered on the latter only when the number of points per dimension

N is odd. However, the cubic region can be centered in the origin of the axes by considering the

following definition of the physical coordinates [47]

(rnM,α)phys = a

(

nnM,α − N − 1

2

)

. (47)

As a consequence, when N is even the physical points (rnM,α)phys do not include the origin any

more and assume only half-integer values. This second map between lattice and physical coordin-

ates, that had been already adopted in a study on rotational invariance restoration of lattice

eigenfunctions in ref. [47], is preferable for plotting the discretized wavefunctions.

Finally, it is worth remarking that, if the lattice configuration space is restricted to the first octant

of the three-dimensional space (e.g. Eq. (46) with a sign reversal in the argument of the second

row) the average values of L2 on states with good angular momentum converge to incorrect val-

ues in the continuum and infinite volume limit, due to the exclusion of physical points bearing

negative entries.
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5.2. Binding energy

Another physical quantity of interest for our analysis is the binding energy BE(Z,N) that

can be obtained from the energy of the lattice Hamiltonian H ground state, E0+ , via the relation

BE(2M, 2M) = 2Mm
1H
c2 + 2Mmnc

2 −Mm
4He

c2 − E0+ . (48)

Since the parameters of the Ali-Bodmer potential are fitted to the α − α scattering lengths, the

experimental value of the binding energy of 8Be from Eq. (48) differs from the observational one,

even in the large boxes limit. On the other hand, for 12C the addition of a 3-body potential

permitted to fix the ground state energy to the 3α decay threshold, thus yielding binding energies

consistent with their experimental counterparts, provided the experimental energy gap between

the Hoyle state and the former breakup threshold is added to E0+ .

5.3. Multiplet averaging

The multiplet averaged value of energy the is defined as

E(ℓPA) =
∑

Γ∈O

χΓ(E)

2ℓ+ 1
E(ℓPΓ ) , (49)

where Γ is an irreducible representation of the cubic group (cf. Tab. A.6), χΓ(E) is its character

with respect to the conjugacy class of the identity and P is the eigenvalue of the inversion operator,

P. The same operation can be performed for average values of operators representing physical

observables Q on lattice eigenstates,

〈Q〉(ℓPA) =
∑

Γ∈O

χΓ(E)

2ℓ+ 1
〈Q〉(ℓPΓ ) . (50)

In particular, the latter formula that has been extensively applied for the squared angular mo-

mentum operator, L2, in the analysis of finite-volume and discretization effects.

6. Implementation of the method

As it can be inferred from Sec. 5.1, the extent of configuration space of 12C on the cubic

lattice would require the storage of vectors and matrices with a huge amount of entries. For

instance, any eigenvector of the lattice Hamiltonian with N = 31 for the latter nucleus implies

the storage of almost nine hundred millions of entries, a number that rises to circa 32 109 double

precision items if all the meaningful operators involved in the diagonalization and eigenspace

analysis stored as sparse matrices are considered. Although in the previous literature on the

subject (cf. Refs. [48] and [49]) pre-built numerical diagonalization functions for the Hamiltonian

matrix were considered, the increased dimension of the lattice operators acting on the eigenvectors

led us to the choice of the memory-saving Lanczos algorithm (cf. Sec. 6.1), an iterative method

reducing the overall storage cost to the one of subset of eigenvectors of interest and making

extensive use of indexing.
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6.1. The Lanczos algorithm

The algorithm chosen for the simultaneous diagonalization of Hr and R
π/2
z is an implementa-

tion of the Lanczos algorithm and is based on the repeated multiplication of the matrix of interest

on a vector followed by its subsequent normalization, like the power or Von Mises iteration. Once

a suitable initial state, Ψ0, is constructed, our method produces a c-number and a vector, that

reproduce the lowest signed eigenvalue of the matrix and the relevant eigenvector respectively

with increasing precision after an increasing number of iterations.

Before the beginning of the iteration loop, the trial eigenvector, Ψ0, is defined. Although also

random states could be used for attaining the task, the construction of trial states that reflect

the symmetries of the Hamiltonian often reduces the number of necessary iterations. Besides,

an initial value for the eigenenergy, E0, is entered together with Ψ0 and the pivot energy, Ep, a

c-number that ensures the convergence of the desired eigenvector to the one corresponding to the

lowest signed eigenvalue. Once Ψ0 is passed into the loop, the updated vector in the beginning of

the k + 1-th iteration, Ψnew
k+1, is related to the resulting state from the previous iteration,Ψk, via

the following realtion

Ψnew
k+1 = (Hr + R

π/2
z − Ep)Ψk , (51)

i.e. a multiplication of Ψk by the matrices to be simultaneously diagonalized followed by the

subtraction of the same vector multiplied by Ep. Then, the updated value of the energy eigenvalue

is drawn from the updated state by taking the scalar product of Ψnew
k+1 with Ψk,

Ek+1 = (Ψk,Ψ
new
k+1) + Ep . (52)

Immediately after, also the pivot energy undergoes an update. If Ek+1 − Ek turns out to be

positive (resp. negative), in fact, Ep is incremented (resp. decremented) by a positive integer,

whose magnitude is usually different in the two cases,

Enew
p = Ep +∆[sign(Ek+1 − Ek)] (53)

where ∆[+1] > ∆[−1], in order to make the series {Ek} converge to Er. More precisely, in all

the computations that follow, ∆[+1] is tuned to be approximately ten times larger than ∆[−1],

even if further adjustment of these two parameters depending on the O irreps of the eigenstates of

interest leads to faster convergence. At this point, it is worth observing that, if the pivot energy

is set equal to zero and its update loop, cf. Eq. (53), is suppressed, the body of this version of the

Lanczos algorithm would exactly coincide with the one of the power iteration. Finally, as in the

Von Mises iteration, the normalization of the k + 1-times improved eigenfunction,

Ψk+1 =
Ψnew

k+1
∥

∥Ψnew
k+1

∥

∥

, (54)

ends the body of the iteration loop, that runs until the absolute value of the difference between the

updated energy eigenvalue and Ek falls below a given value of precision, δC , customarily set equal

to 10−9 or 10−10 MeV. The convergence of the outcoming state vector to the actual eigenfunction
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of Hr and Rπ/2
z is ensured by both the non-degeneracy of the common eigenvalues of the two

matrices and by the construction of a trial state with a nonzero component in the direction of the

eigenvector associated to the ground state: in case one of these two conditions is not satisfied,

convergence of the {Ψk} series is no longer guaranteed.

Moreover, the number of iterations required to attain the given precision, δC , in the extraction of

the eigenvalues grows not only with the box size, N , (i.e. with the dimension of the Hamiltonian

matrix), but also with the inverse of lattice spacing. This is due to the fact that eigenenergies get

closer in magnitude for small values of a and the eigenvector under processing, Ψk, may oscillate

many times about the neighbouring eigenstates during the iterations before converging. Besides,

a wise choice of the trial wavefunction turns out to reduce significantly the number of required

iterations and can stabilize the process.

The bare Lanczos iteration just described, however, does not allow for the extraction of any

other eigenvector than the ground state unless an orthogonalization scheme involving the already

extracted states is introduced. In order to access a wider region of the spectrum (e.g. n + 1

eigenstates), Gram-Schmidt orthogonalization has been introduced into the body of the iteration

loop: if Ψ(0), Ψ(1), ... Ψ(n−1) is a set of n converged states, the remaining eigenstate, Ψ
(n)
k+1, is

finally orthogonalized in the end of each iteration with respect to the former eigensubspace. Is

exactly this piece of the puzzle that prevents Ψ
(n)
k+1 to collapse into the ground state of the system,

even when the initial trial function maximizes the overlap with the target eigenstate.

Furthermore, projectors upon cubic 3 and permutation group irreps (cf. Eq. (44)) have been

applied to the Ψ
(n)
k+1 state just before orthonormalization, thus allowing for the investigation of

specific regions of the spectrum of the two compatible operators.

Before concluding the paragraph, special attention has to be devoted to the T1 and T2 eigenstates

of Hr + R
π/2
z . Even if the spectrum of the matrix is complex, the power method implemented

in the space of real vectors of dimension N3M−3, does not allow for the extraction of complex

eigenvalues with nonzero imaginary part and the relevant eigenvectors, transforming as the 1 and

3 irreps of C4. The outcoming vectors are real and orthogonal among themselves and remain

associated to (almost) degenerate real energy eigenvalues. Since the remaing partner of the T1

(resp. T2) multiplet, with Iz = 0 (resp. 2), transform in a separate block under the operations of

C4 and the exact eigenvectors are related by complex conjugation,

ΨΓ,Iz=3 = [ΨΓ,Iz=1]
∗ (55)

the true common eigenvectors of Hr and R
π/2
z can be drawn from the real degenerate ones, Ψ

(p)
Γ

and Ψ
(q)
Γ , by means of a SU(2) transformation on the corresponding eigensubspace,

(

ΨΓ,Iz=1

ΨΓ,Iz=3

)

=
1√
2

(

Ψ
(p)
Γ + iΨ

(q)
Γ

Ψ
(p)
Γ − iΨ

(q)
Γ

)

. (56)

3For example, Eq. (40) with the Wigner D matrix, DJ(α, β, γ), replaced by a representative of the element
(α, β, γ) in the reducible N3M−3-dimensional representation of the eigenstates of Hr.
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Since C4 is Abelian, made of four rotations about the same axis, any 2-dimensional representation

of it can be reduced to a direct sum of 1-dimensional irreps, provided the similarity matrix is

allowed to be complex.

As done with the cubic and the permutation group, projectors on the real (Iz = 0, 2) irreducibles

representation of C4 can be constructed and introduced in the iteration loop, thus halving (resp.

reducing to one third) the memory consumption for the storage of E (resp. T1 and T2) states and

extending the accessible region of the low-energy spectrum of the two nuclei considered here.

6.2. Parallel implementation

The iteration code pointed out in the previous section has been written first in MATLAB and

in Fortran 90 and, finally, in CUDA C++. Although devoid of the vector indexing conventions of

MATLAB, Fortran 90 permitted us to perform parallel computations on the available clusters of

CPU processors (cf. Acknowledgements). The original MATLAB codes drafted for the first tests,

in fact, have been rewritten in the latter language using the pre-built Message Passing Interface

(MPI) routines. In particular, each of the converged eigenvectors has been assigned to a different

processor (referred also as rank) on the same node whereas, in the succeeding versions of the MPI

codes, the eigenvectors themseleves have been split into different ranks, in order to achieve further

speedup. Nevertheless, for the large-lattice (25 ≤ N ≤ 31) diagonalizations concerning 12C, the

exploitation of the graphic cards (GPUs) of the same cluster has been considered, thus leading to

a significant reduction in the computational times (up to a factor of 5 · 10−2) for the given box

size interval. Accordingly, the Fortran MPI code has been rewritten in CUDA C++ in such a

way that each of the vectors, assigned to a single CPU (host), is copied, processed and analyzed

entirely on a single GPU core (device) and only finally copied back to the host, for the backup of

the vector in the hard disk memory. This final rewriting of the codes for the diagonalization and

the analysis of the state vectors allowed us to process vectors with N = 31 of 12C and a precision

δC = 10−9 (cf. Sec. 6.1) within six hours of running time. Finally, the use of more than one GPU

node for the storage of each state vector is likely to extend the 12C diagonalizations to N ≥ 32

and to allow for the analysis of eigenvectors of mid-sized lattices (10 ≤ N ≤ 12) for the 16O in

the near future.

6.3. Boundary conditions

So far, no reference to the way in which the Cauchy problem associated to the relative Hamilto-

nian Hr (plus the cubic group operation) has been made. A customary choice in lattice realizations

of Schrödinger equation is the imposition of periodic boundary conditions (PBC) on the eigen-

functions,

Ψ(q)(n+mN) = Ψ(q)(n), (57)

where m and m are two vectors of integers. A practical realization of this constraint is provided

by the application of the modulo N functions on the array indices corresponding to hopping
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terms of the lattice operators involved. This results the appearance of more entries in the matrix

realizations of quantum mechanical operators, whose explicit storage has been wisely avoided.

Another choice of boundary conditions, subject of a recent investigation on three-body systems

[23], is given by the twisted boundary conditions (TBC),

Ψ(q)(n+mN) = eiθ·mΨ(q)(n) . (58)

Since for twisting angles equal to zero, θα = 0, the two constraints coincide, Eq. (58) can be

considered as a generalization to complex phases of the usual PBC. In particular, it has been

proven that in two-body systems i-periodic boundaries, i.e. with θα = π/2, reduce significantly

the leading order exponential dependence of the finite-volume energy corrections and that ana-

logous suppressions of finite-volume effects for three-body systems can be achieved [23].

Nevertheless, since our aim is the analysis of the breaking of rotational invariance in four α particle

systems, we chose the computationally cheaper PBC.

7. The 8Be nucleus

It is firmly enstablished that the actual ground state of this nucleus lies 91.84 keV above

the α − α decay threshold, thus making it the only unbound α-conjugate nucleus with M ≤
10. However, it remains of interest to dwell shortly on the behaviour of the binding energy (cf.

Eq. (48)) of this nucleus for different values of N and lattice spacing kept fixed to 0.75 fm. As it

can be inferred from Fig. 3, the infinite volume value (L ≡ Na = 40 fm) of the binding energy

(≈ 57.67 MeV) is inconsistent of about 1.2 MeV with the observational value (≈ 56.50 MeV [70]),

due to the choice of tuning the parameters of the Ali-Bodmer potential on the 0+1 - 0+2 gap of 12C.
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Figure 3: Binding energy of the 8Be as a function of N, for a lattice with spacing a = 1.0 fm.

Nevertheless, the binding energy grows with the volume of the lattice, in accordance with the

sign of the leading order finite volume correction for a 0+ A1 state [12]. Besides, due to the choice
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of the O(a8) approximation for the dispersion term, the smallest lattice of interest is the one with

N = K = 4, in which the binding energy turns out to be largely underestimated (≈ 12 MeV).

As discussed in Sec. 4, the spectrum of the 8Be Hamiltonian (cf. Eq. (1) with M = 2) on the lattice

is made of simultaneous eigenstates of the cubic group, the cyclic group of order four generated by

R
π/2
z , spatial (and time) inversion and S2, the permutation group of two elements. In particular,

being particle exchange equivalent to the reversal of the sign of the relative coordinate r12, bosonic

(resp. fermionic) eigenstates possess even (resp. odd) parity.

In order to assess the capability of the model of describing the observed α-cluster lines of this

nucleus and receive some guidance for the subsequent choice of the multiplets of interest, we

present a short excerpt of the low-energy spectrum of Hr for a box with a = 0.5 fm and N = 36

in the Tab. 2.

E [MeV] Γ Iz P S2 〈L2
tot〉 [~

2]

−1.106778 A1 0 + −0.056

0.353021 T1

0
- 2.0861

3
0.948046 A1 0 + 2.507

1.721746 E
0

+ 6.899
2

2.261133 T1

0
- 10.0291

3

2.532701 T2

1
+ 7.0902

3
2.651441 A1 0 + 18.908

E [MeV] Γ Iz P S2 〈L2
tot〉 [~

2]

2.834477 E
0

+ 15.332
2

3.133750 T2

1
- 12.6762

3

3.868673 T2

1
+ 17.4512

3

3.960128 T1

0
- 23.6291

3
4.289695 A1 0 + 30.743

4.302368 A2 2 - 14.698

4.308802 E
0

+ 10.620
2

Table 2: The 14 lowest multiplets of eigenstates of the 8Be lattice Hamiltonian with N = 35 and a = 0.5 fm.

Noticeable are the discrepancies between the eigenvalues of the squared angular momentum

operator and the average values of it reported in the table. Since the volume of the box (Na = 17.5

fm) is large enough to reduce finite-volume effects to the third decimal digit of the energy, these

disagreements are due to discretization effects, whose magnitude increases with excitation en-

ergy and make the reconstruction of the infinite-volume angular momentum multiplet from the

〈L2
tot〉 ≡ L2 hardly reliable: for the first 2+ multiplet, consisting of an E plus a T2 state, ∆L2

is already 15 % of the expected angular momentum eigenvalue. The behaviour of the squared

angular momentum, therefore, suggests that wavefunctions corresponding to states of increasing

energy are also incrasingly position-dependent.

In addition the presence of an A+
1 state at 0.948 MeV, that further diagonalizations of the lattice

Hamiltonian indicate as 0+, appears to be in contrast with the present observational data, that

position the first excited 0+ at 27.494 MeV [71].

In order to study a larger number of bound states as well as to test the results reported in Ref. [48],
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the strength parameter of the attactive part of the Ali-Bodmer potential, V0, has been incremen-

ted by a 30 % with respect to its original value, see the dashed curve in Fig. 2.1. Accordingly, the

artificial ground state lies approximately 10.70 MeV below its observational counterpart.

Besides the fundamental state, the infinite-volume spectrum of the Hamiltonian includes also a

2+ multiplet, made of an E and a T2 state and another 0+ state, the closest to the α-α decay

threshold. Since the latter appears only for relatively large volumes (Na ≥ 25), we focus the at-

tention only on the 2+ multiplet, as in Ref. [48]. Fixing the lattice spacing to a = 0.25 fm in order

to reduce discretization effects and enlarge the samples of data, we investigate the finite-volume

effects on the energy and the squared angular momentum of the three multiplets of states.
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Figure 4: Behaviour of the energies
of the lowest 0+ (vertical bars) and
2+ (horizontal bars) eigenstates as a
function of the box size N for a =
0.25 fm. As expected, the eigenen-
ergies associated to states belonging
to the same irrep of SO(3) but to
different irreps of O become almost
degenerate at the infinite-size limit,
the remaining discrepancies owing to
space discretization. Multiplet aver-
age of the energies between the E
and the T2 states in the magnifica-
tion has been denoted by a solid line.

With this choice of the lattice spacing, the ground state energy reaches its infinite volume value

within the third decimal digit for Na = 13.25, while the two multiplets, E and T2 become degen-

erate within the same precision only for Na = 17. Nevertheless, convergence for the latter can

be boosted by considering the multiplet averaged energy [48], E(2+A), of the five states composing

the 2+ continuum one, the third-digit accuracy is already achieved by E(2+A) at Na = 14.25. The

theoretical justification underlying this procedure resides in the cancellation of the polynomial

dependence on N of the lowest order finite-volume energy correction for the multiplet-averaged

state. The main contribution to this energy shift is proportional to exp(κN), where κ =
√
−2mE

is the binding momentum of the state, and turns out to be negative for all the values of N (cf.

Eq. (19) of [48]) and even angular momentum.

Even though we do not have an analytical formula for the finite-volume corrections to the average

values of L2 at our disposal, we extend the use of the average on the dimensions of cubic group

representations to the latter. As for the energies, an overall smoothing effect on the discrepancies

between the average values and the eigenvalues of the squared angular momentum can be observed:
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a two digit accuracy in the estimates of the latter is reached at N = 37 by the multiplet-averaged

L2 for the 2+ multiplet, see the red dashed line in Fig. 5, while the individual members of the

multiplet reach the same precision only at N = 51. Moreover, in the large volume limit (N = 72)

the 0+ state approaches the angular momentum eigenvalue within 2 × 10−5~−2, whereas for the

E and T2 states of the 2+ multiplet the accuracy is poorer, i.e. 2× 10−3~−2 and 8× 10−4~−2, in

order.
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Figure 5: Average value of the squared angular mo-
mentum for the three bound state multiplets as a func-
tion of the lattice size. As predicted, the average values
of L2 for the 0+A1

, 2+E and 2+T2
states smoothly converge

to the eigenvalues equal to 0, 6 and 6 units of ~
2 re-

spectively of the same operator, despite some oscillatory
behaviour.
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Figure 6: Difference between the average value and the
expected eigenvalue of the squared angular momentum
for the three bound state multiplets as a function of the
lattice size. Logscale is set on the y axis, thus unveiling
a regular linear behaviour in the finite volume L2 cor-
rections for boxes large enough, analogous to the well-
known one of the energies of bound states [12]. Unlike
the latter, the three spikes due to sign reversal of the
∆L2 suggest that the finite volume corrections to this
observable are not constant in sign.

Plotting finally the discrepancies between the average values and the expected eigenvalues of

the squared angular momentum of the three sets of degenerate energy eigenstates as function of

the number of box sites per dimension, an exponential behavior of the former, ∆L2 = A exp(mN)

with A and m real parameters, can be recognized, cf. Fig. 6. A linear regression with slope m and

intercept logA on the points with N & 35 can be performed, highlighting a distinct descending

behaviour for each of the multiplets: the ∆L2 of the 2+ states decreases, in fact, with the same

angular coefficient within three-digit precision. It follows that the precision with which the squared

angular momentum average values agree with their expectation values is an increasing function

of the the binding momentum: the more the state is bound, the greater is the reliability of the L2

estimation. Nevertheless, the derivation of an analytical formula for the finite volume corrections

to the eigenvaues of the squared angular momentum operator remains a subject of interest for

further publications.

Besides, once finite volume effects are reduced to the fourth decimal digit in the energies via the

constraint Na ≥ 18 fm, the effects of discretization for different values of a can be inspected. As
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observed in [48], the energies as function of the lattice spacing display an oscillatory behaviour,

whose amplitutes for the A1 state are limited to the first decimal digit for 0.9 . a . 1.2 fm, then

second digit precision is achieved for 0.7 . a . 0.9 fm. For the members of the 2+ multiplet

the fluctuations about the continuum value of the energies become more pronounced, being the

achievement of a three digit precision confined to a . 0.5 fm. Since only lattices with odd number

of sites per dimension contain the origin of the axes, cf. the definition of the map between lattice

sites and physical coordinates in Eq. (47), that is supposed to give important contribution to the

lattice eigenenergies when the wavefunction is concentrated about the former point, only lattices

with odd values of N have been considered for the large (a & 1.25 fm) lattice spacing analysis.
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Figure 7: Behaviour of the energies
of the bound eigenstates as a func-
tion of the lattice spacing a for Na ≥
18 fm (ℓ = 0) and Na ≥ 19 fm
(ℓ = 2). As expected, the eigenen-
ergies associated to states belonging
to the same irrep of SO(3) but to dif-
ferent irreps of O become almost de-
generate in the zero-spacing limit. In
the opposite direction, another level
crossing is expected to occur at a ≈
4.5 fm. Multiplet-averaged energy of
the 2+ states has been denoted by a
dashed line.

Although a closed form for the leading order dirscretization corrections to the energy eigen-

values does not exist, it remains possible to associate some extrema of the latter, see Fig. 7 and

Fig. 3 in Ref. [48], to the maxima of the squared modulus of the associated eigenstates. This

interpretation rests on the assumption that Er(a) reaches a local minimum for all the values of the

spacing a such that all the maxima of the squared modulus of the corresponding eigenfunction,

|Ψr(r)|2, are included in the lattice. This condition is satisfied when all the maxima lie along the

symmetry axes of the cubic lattice. In case |Ψr(r)|2 possesses only primary maxima, i.e. points

lying at distance d∗ from the origin such that the most probable α-α separation, R∗, coincides

with d∗, the description of the behaviour of Er(a) in terms of the spatial distribution of the as-

sociated wavefunction becomes more predictive. In particular, when all the maxima lie along the

lattice axes and the decay of the probability density function (PDF) associated to Ψr(r) with

radial distance is fast enough, i.e. |Ψr(r)|2Max ≫ |Ψr(r)|2 for |r| = nd∗ and n ≥ 2, the average

value of the interparticle distance coincides approximately with the most probable α-α separation,

R ≈ d∗, and the average value of the potential, V , is minimized at the same time.
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The two different patterns lead to the same inclusion conditions for the principal maxima,

a = d∗/
√
2n with n ∈ N, i.e. a ≈ 2.02, 1.01, 0.67, . . . fm. In practice, two well-developed minima

for a ≈ 2.02 and 1.05 fm are observed, still in agreement with the predictions. Moreover, two

minima are detected in the potential at a ≈ 1.96 and 1.05 fm, whereas no extremum is found for

around a = d∗, due to the absence of maxima along the lattice axes (cf. Fig. 12).
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Figure 12: Behaviour of the average values of the kinetic energy, T , and the potential operator, V, on the 2+1 T2

eigenstates as a function of the lattice spacing a for Na ≥ 19 fm. The sum of the two average values produce
the already displayed Er curve (cf. Fig. 7), that almost overlaps the dotted one of T when the potential energy is
negligible (a & 2.8 fm) and the three states of the multiplet are unbound.

Therefore, the interpretation of the behaviour of the eigenenergies of bound states based on

the spatial configuration of the corresponding eigenfunctions and the average value of potential V
on the latter reviewed also in Sec. III A of Ref. [48] is further supported by our findings.

However, also the behaviour of the energy eigenvalue as a function of the lattice spacing for the

ground state (cf. Fig. 7) can find an interpretation if the extrema of the two-body potentials

V II are considered. Since the spatial distribution of the PDF of the 0+1 state is spherical with a

maximum when the two α particles completely overlap (d∗ = 0), minima of Er may occur when

the only minimum of V II at 2.64 fm is mapped in the cubic lattice, i.e. for spacings equal to 2.64,

1.32, 0.85 . . . fm. Effectively, two minima at about 1.25 and 2.70 fm are found together with a

quasi-stationary point at 2.35 fm, perhaps due to the inclusion of the shallow maximum of the

two-body potentials at 6.71 fm, see Fig. 2.1.

Concerning the angular momentum, similar considerations on fluctuations can be drawn: first

decimal digit oscillations are associated to the region 0.96 . a . 1.55 fm of the ground state,

the 1.05 . a . 1.58 fm one of the 2+E state and the 0.96 . a . 1.7 fm one of the 2+T2
, while

third decimal digit accuracy is achieved for a . 0.6 fm by the 0+ and only at a . 0.2 fm and

a . 0.55 fm for the two members of the 2+ multiplet, respectively. The overall behaviour of

the angular momentum average values of the three states seems unaffected by level crossings and

turns out to be smooth, with the noticeable exception of the evolution curve for the 2+T2
state.
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In correspondence with the local maximum of the energy eigenvalue at a = 2.9 fm a rapid step

increase of the average value of the squared angular momentum of the latter eigenstate takes

place, see Fig. 14. This phase transition-like behaviour is perhaps related to the exclusion of a

sharp extremum characterizing the wavefunction from the lattice, thus preventing an unambigu-

ous determination of the angular momentum content of the 2+T2
state for a & 2.9 fm.

Contrary to the finite-volume analysis, few conclusions can be drawn from the plot of the ∆L2

average values (cf. Fig. 14). Even if one keeps the logscale in the ordinate axis, the behaviour

remains far from linear, due both to sign oscillations of the corrections and to a certain overall

negative concavity. In addition, multiplet averaging seems to have little effect in smoothing these

fluctuations.
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Figure 13: Average value of the squared angular mo-
mentum for the six bound states as a function of the lat-
tice spacing when Na ≥ 18 fm (ℓ = 0) and Na ≥ 19 fm
(ℓ = 2). As previously, convergence of the average val-
ues of J 2 to its expected eigenvalues is attained in the
zero-spacing limit.
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Figure 14: Difference between the average value and the
expected eigenvalue of the squared angular momentum
for the six bound states as a function of the lattice
spacing for Na ≥ 18 fm (ℓ = 0) and Na ≥ 19 fm
(ℓ = 2). Even if a logscale is set on the y axis, no regular
behaviour in the finite volume L2 corrections can be
detected, apart from an overall negative concavity and
piecewise linearity of the 0+A1

and 2+T2
curves.

With the aim of extending the previous analysis to higher angular momentum states and

assessing the effectivity of multiplet averaging, we increase artificially the stength parameter of

the attractive part of the Ali-Bodmer potential up to the 150 % of its original value, see the

dotted curve in Fig. 2.1. By means of this artifact, the wavefunctions of the 4He nuclei become

more localized about the origin, a consequence of the enhanced attraction of the α− α potential.

Moreover, finite volume effects in lattices with size Na = 12 fm are already limited to the third

decimal digit for the energies of the bound states, a precision that, in the previous case, was

attained by the 2+ multiplet only at 17 fm.

Besides the latter states and the fundamental one, the bound region of the spectrum now contains

four 0+ and two further 2+ multiplets, together with two 4+ and the expected 6+, in whose

decomposition into irreps of the cubic group all the representations appear at least once.
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Figure 15: Behaviour of the energies of the bound eigenstates as a function of the box size N for a = 0.25 fm. In
the background graph, lines marked by horizontal bars are associated to 0+ states, lines marked by vertical bars
with 2+ states, lines marked by crosses with 4+ and lines marked by asterisks with 6+. As expected, rotational
symmetry is almost restored in the lage box size limit (N = 52), the remaining discrepancies O(10−4) MeV being
essentially due to space discretization. The magnification resolves the 4+2 and 6+1 states in terms of the underlying
cubic group multiplets. Multiplet-averaged eigenenergies of the two are denoted by dashed and dotted lines, in
order.

As in the previous case, multiplet averaging of the energies of the 4+ and 6+ multiplets finds

further justification with the cancellation of the polynomial dependence on the lattice size N

in the lowest order finite-volume energy corrections (FVEC). More precisely, the leading order

correction for the multiplet averaged energies with angular momentum ℓ and parity P assumes

the universal form [48]

E∞(ℓPA)− EN (ℓPA)|LO= (−1)ℓ+13|γ|2 e
−κN

mN
, (59)

as its magnitude is independent on the particular SO(3) irrep according to which the energy

eigenstate transforms. Keeping the lattice spacing invariant with respect to the previous case,

we repeat the finite-volume analysis for all the bound states, but dedicating a special attention

to the two uppermost SO(3) multiplets, 4+2 and 6+1 . Even if the extraction of a greater number

of bound states increases the runtime of the numerical computations, the faster decay of the

wavefunctions with distance allows to keep the same lattice spacings. Due to the changes in the

spatial distribution, the cubic group multiplets composing the SO(3) ones become degenerate with

a minimum precision of 10−3 MeV already at N = 52, while the average values of the squared

angular momentum reach the expectation values with a four decimal digit minimum accuracy.

30



As it can be inferred from the magnification in Fig. 15, at least two level crossings between states

with the same transofmation properties under the operations of the cubic group take place: the

involved states are the A1 and the E ones of the two SO(3) multiplets. These intersections are at

the origin of sudden spikes in the evolution curves of the average values of the squared angular

momentum with N for the latter states. As this is presumably due to the insufficient sampling in

these regions limited by the lattice spacing constraint, these points have been accurately removed

from the plots in Figs. 16 and 17. Therefore, better estimations of the intrinsic behaviour of these

angular momentum evolution lines can be drawn from O multiplets that never experience level

crossings with states having the same transformation properties under the cubic group. Optimal

candidates for such curves are the smooth ones associated to the 6+A2
, 4+T1

, 4+T2
and 6+T2

I 4 levels.

5 10 15 20 25 30 35 40 45 50 55
10

15

20

25

30

35

40

45

50

55

N

~
−
2
L2

A1 E
T1 T2

Figure 16: Average value of the squared angular mo-
mentum for the 4+ states as a function of the lattice
size. As predicted, the average values of L2 for the cu-
bic group partners of the SO(3) multiplet converge to
the eigenvalue of 20 units of ~

2 of the same operator,
even if a well-pronounced oscillatory behaviour for rel-
atively small lattices (N . 32).
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Figure 17: Average value of the squared angular mo-
mentum for the 6+ states as a function of the lattice
size. As predicted, the average values of L2 for the cu-
bic group partners of the SO(3) multiplet converge to
the eigenvalue of 42 units of ~

2 of the same operator,
even if a well-pronounced oscillatory behaviour for rel-
atively small lattices (N . 32) is observed.

The plot of the differences between the average values and the expected values of L2 with the

number of lattice sites per dimension enables us to confirm the qualitative observations on the finite

volume corrections for the squared angular momentum. For lattices large enough (N & 26), the

latter decreases exponentially with N , the decay constant being approximately shared by all the

members of the same SO(3) multiplet. Besides, convergence to the expected angular momentum

is faster for more tightly bound states, suggesting again a dependence of the decay constants on

the energies of the spectral lines. Moreover, the chosen value of the lattice spacing is responsible

of the saturation behaviour of the lines for the 6+T1
and 6+T2

II for N ≥ 37: as observed in Fig. 14,

discretization affects states belonging to different SO(3) and O irreps in different extent.

4With 6+T2
I has been denoted the T2 multiplet lying always below in energy with respect to the J = 6 partner

bearing the same cubic irrep.
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Setting a box size equal to 12 fm, we can now concentrate on discretization effects. As

expected, here the consequences of a more localized distribution of the wavefunctions about the

origin become even more evident. Discretization errors for the energies remain large in a wide

range of lattice spacing, dropping to the first decimal digit for most of the bound states only at

a ≈ 0.60 fm and then reaching third digit precision only at 0.25 fm. Nevertheless, the behaviour

of the 4+2 and 6+1 eigenenergies as function of the lattice spacing appears smooth in the interval of

interest, 0.24 ≤ a ≤ 1.8 fm. In particular, the curves for the 4+2 E, A1 and T2 multiplets display

a deep minimum located around 0.95 fm, cf. Fig. 19, whereas the one of the T1 levels possesses a

shallower pocket, closer to the origin (a ≈ 0.75 fm). Similarily, the energy curves of the 6+A1
, 6+A2

and 6+E states possess a well developed first minimum about 1.38, 1.02 and 0.91 fm, respectively,

while T1 and T2 states are characterized by a first shallow minimum at about 0.9 fm followed by

a second even less-developed one around 1.5 fm.
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Figure 19: Behaviour of the energies of the 4+2 eigen-
states as a function of the lattice spacing for Na ≥ 12 fm.
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Figure 20: Behaviour of the energies of the 6+1 eigen-
states as a function of the lattice spacing for Na ≥ 12 fm.
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average value of the potential, cf. Fig. 22, and the α-α distance see Fig. 23, is shifted towards

smaller spacings (≈ 0.85 fm), due to a slow decrease of the associated probability density function

in the vicinity the maxima.
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Figure 22: Behaviour of the average values of the kinetic en-
ergy, T , and the potential operator, V, on the 6+1 A2 eigenstate
as a function of the lattice spacing a for Na ≥ 12 fm. The
sum of the two average values produce the already displayed
Er curve, see Fig. 20.
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Figure 23: Behaviour of the average value of the
interparticle distance as a function of the lattice
spacing for the 6+1 A2 eigenstate. A minimum
in R at a ≈ 0.88 fm is visible, implying that the
condition on the decay of the wavefunction with
increasing α-α distance is appreciably satisfied.

Concerning the angular momentum, the fluctuations of the average values of L2 about the

corresponding expectation values for a & 0.6 fm are even larger than the ones of the energies. The

effect is even amplified for the 0+3 and the A1 member of the lowest 4+1 state due to their quasi-

degeneracy and the many level crossings they undergo before reaching their continuum eigenvalue.
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Figure 24: Behaviour of the squared angular mo-
mentum of the 4+2 eigenstates as a function of the lat-
tice spacing for Na ≥ 12 fm. As before, convergence of
the average values of L2 to its expected eigenvalues is
achieved in the zero-spacing limit.
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Figure 25: Behaviour of the squared angular mo-
mentum of the 6+1 eigenstates as a function of the lattice
spacing for Na ≥ 12 fm. Convergence of the average
values of L2 to its expected eigenvalues is attained in
the zero-spacing limit.
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Due both to the absence of nearby levels with the same transformation properties under O
and the smaller number of these crossings, the 4+2 and the 6+1 multiplets converge sensibly faster

to their expected squared angular momentum eigenvalue in the zero spacing limit. Nevertheless,

the appreciable continuity of the evolution curves of L2 with a remains seldom interrupted by

sharp spikes and wells, withnessing level crossings of the aforementioned kind.

Because of the presence of many low-lying 0+ and 2+ states, the A1 and, to a smaller extent, T2

and E lines are more heavily affected by cusps than T1 and A2 states, whose behaviour exhibits

the transition-like features already observed in Fig. 14. The onset point of these step-growing and

falling parts marks the upper bound of the lattice spacing interval in which the observed levels

can be classified as partners of a SO(3) multiplet. Beyond a ≈ 0.9 fm, the characterizing part of

all the wavefunctions composing the 4+2 and 6+1 multiplets in not sampled any more by the lattice,

thus making angular momentum classification of the states almost unreliable.

Since the |∆L2|(a) curve for the 2+E state in the above is heavily affected by the sign inversions of

the angular momentum correction, no particular conclusion was drawn from the graph in Fig. 14.

In this case, a part from a spike in the 4+T1
curve around 0.3 fm and some disturbance in the

4+T2
one around 0.75 fm, an appreciable quasi-linear behaviour of the log |∆L2|’s can be inferred

from 0.7 fm towards the continuum limit. Consequently, the corrections to the squared angular

momentum average values for lattice cubic group eigenstates can be reproduced by a positive

exponential of a,

|∆L2(ℓ)| ≈
a→0

Aℓ exp(a · κℓ) . (62)

in the small-spacing region. In particular, the constant in the argument of the exponential, κℓ, is

approximately independent on the cubic group irrep Γ according to which each state of a given

angular momentum multiplet ℓ transform. Moreover, the proportionality constant Aℓ in Eq. (62)

vanishes exactly for infinite-volume lattices and is expected to decrease with increasing box size

Na.
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Figure 26: Difference between the aver-
age value and the expected eigenvalue of
the squared angular momentum for the 4+2
(left) and the 6+1 states (right) as a func-
tion of the lattice spacing. The same con-
vention on the markers for the cubic group
irreps of Figs. 15-22 is used.

However, the extent of the region where this approximation can be successfully applied de-
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pends on the onset point of the step growing or falling parts of the squared angular momentum

curves. Since the α-α average distance is larger for the 6+1 than for the 4+2 , this interval is wider

for the former and the positive exponential behaviour more evident.

8. The 12C nucleus

After having investigated finite volume and discretization effects in the low-lying spectrum of
8Be, we now focus on the analysis of the bound states of a system three interacting α particles in

the same framework, the 12C nucleus. Due to the particular choice of the parameters of VAB, the

addition of the attractive phenomenologic three-body potential in Eq. (5) permits us to reproduce

the binding energy of this nucleus. Although the ground state is tuned on the energy of the Hoyle

state rather than on the 3α decay threshold, in fact, the binding energy can be still recovered,

provided the well-established positive gap between the latter two is added to the ground state

energy, E0+ in Eq. (48).
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Figure 27: Binding energy of the 12C as a function of N, for lattices with spacing a = 0.75 fm.

Even if the behaviour of lattice binding energy (cf. Eq. (48)) with the box size N is all

in all analogous to the one of Beryllium, two digit accuracy with the observational counterpart

(≈ 92.16 MeV) of the former is finally reached at N = 24 and spacing equal to 0.75 fm. Therefore,

finite volume effects can be reasonably neglected for our purpose in lattices with size Na ≥ 18 fm.

Differently from the preceeding case, there is no more isomorphism between parity and particle

permutation group, S3, a six element non-abelian group bearing also a 2-dimensional irreducible

representation (diagrammatically ). As a consequence, besides bosonic and fermionic symmetry,

the eigenstates of the lattice Hamiltonian Hr can be now symmetric with respect to the exchange

of a pair of particles and antisymmetric with respect to the transposition of another couple of

them, resulting in the appearance of unphysical parastatistic eigenstates.
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Given the duration and memory consumption of the eigenvector extraction process and being

parity itself uncorrelated with particle exchange symmetry, also projectors on parity and C4 irreps

have been incorporated in the iteration loop, thus minimizing the number of eigenvectors involved

in the Gram-Schmidt othogonalization. On the other hand, the matrix R
π/2
z , to be simultaneously

diagonalized together with the Hamiltonian (cf. Eq. (51)), has been excluded from the iteration

loop.

E [MeV] Γ Iz P S3 〈L2
tot〉 [~

2]

−7.698420 A1 0 + 0.373

−6.306062 T1

0
− 2.4291

3

−5.457046 T1

0
+ 2.4661

3

−4.550694 T2

1
+

6.612
2
3

−4.470975 E
0

+ 6.175
2

−3.420394 E
0

+ 6.729
2

−3.177991 T2

1

+ 6.8242

3

−2.873875 T2

1
− 7.0862

3

−2.862931 A1 0 + 2.074

E [MeV] Γ Iz P S3 〈L2
tot〉 [~

2]

−2.686463 A1 0 + 1.690

−2.637041 T1

0
− 8.3201

3

−2.483865 T2

1
− 12.6032

3

−2.297536 A2 2 − 12.493

−2.281911 T1

0
− 7.9431

3

−1.981923 T2

1

− 12.5362

3

−1.797457 T1

0

− 12.3601

3

−1.779066 A2 2 − 12.384

−1.706789 T1

0
− 4.4411

3

Table 3: Sample of the spectrum of the 12C lattice Hamiltonian with N = 15 and a = 1.00 fm, consisting of the
17 lowest degenerate energy multiplets. The three angular momentum multiplets of interest, 0+1 , 2+1 and 3−1 are
highlighted in bold. Cubic group multiplets labeled by the Young Tableau with three unaligned boxes appear twice
in the spectrum, since the irrep of the permutation group S3 according to which they transform is 2-dimensional.

Since the actual nucleus is naturally bound, no artificial increase of the Ali-Bodmer potential

attractive parameter is needed for the investigation of finite-volume and discretization effects

in the lowest bound eigenstates. By sampling the sprectrum of the relative Hamiltonian with

N = 15 and a = 1.0 fm, see Tab. 3, and the one with N = 20 and a = 0.9 fm to a smaller extent,

it turns out that this nucleus possesses seven SO(3) multiplets of completely-symmetric bound

states, namely three 0+, a 1−, two 2+ and a 3−, in the continuum and infinite-volume limit.

Experimentally, only a 2+ line at 4.44 MeV is found to lie below the 3α decay threshold [72],

while the lowest 3− and 1− observed excitations result to be unbound by circa 1.9 and 2.2 MeV

respectively.

Starting from this set of bound eigenstates, we choose to restrict our analysis to the ground state

at −7.65 MeV, the 2+1 state at −3.31 MeV and the 3−1 multiplet at −1.80 MeV, decomposing into

an A2, a T1 and a T2 multiplet with respect to the cubic group.
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(crosses) bound eigenstates as a
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eigenenergies associated to states
belonging to the same irrep of
SO(3) but to different irreps of
O become almost degenerate at
the infinite-size limit. The same
convention on the markers for the
cubic group irreps adopted in the
Figures of Sec. 7 is understood.

Analogously to the Beryllium case, we fix the lattice spacing in such a way to reduce the

discretization errors to less than two decimal digits in the infinite-volume limit (Na & 19 fm) for

all the multiplets of interest and plot the behaviour of the energy as a function of the lattice size

N (cf. Fig. 28). The evolution curve for the energy of the ground state follows a similar path

to the one of the 0+ states of 8Be: after a minimum at Na ≈ 6 fm, the continuum and infinite-

volume eigenvalue is reached asymptotically from below, as prescribed by the FVEC formulas

from Ref. [11] for a two-body system.
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Figure 29: Behaviour of the average interparticle dis-
tance for the 0+1 and 2+1 multiplets as a function of the
lattice size. Due to the broader spatial distribution of
the 2+E and T+

2 wavefunctions, the finite-volume effects
on the average values of the α − α separation distance
remain sensitive (≈ 0.24 fm at N = 31).
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Figure 30: Behaviour of the average interparticle dis-
tance for the 3−1 multiplet of states as a function of the
lattice size. As expected, both the three members of
this SO(3) multiplet converge to same average values
of the α-α separation distance, that at N = 31 coincide
within 0.05 fm accuracy.
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In particular, an agreement within one decimal digit with the fitted value of −7.65 MeV is

already reached at Na ≈ 13 fm, whereas the overlap with all the meaningful digits is going

to be achieved at Na ≈ 16.5 fm. However, the 2+ doublet is expected to become degenerate

within one-digit precision only at Na ≈ 16 fm, due to a broader spatial distribution of the E and

T2 eigenfunctions. The average separation between the α particles in the equilateral triangular

equilibrium configuration, in fact, amounts approximately to 4.65 fm for the latter states and to

4.05 fm for the 0+1 state, see Fig. 29. Furthermore, in the 3− energy multiplet the T1 and the A2

states approach the continuum and infinite-volume energy from above, whereas the T2 multiplet

requires corrections of opposite sign, see Fig. 28.

Although analytical formulas for the leading order FVEC for three body systems are still unknown,

the sign of these corrections for the ℓ = 3 multiplet seem coincide with the one of the FVECs for a

multiplet of bound eigenstates with the same angular momentum of a two-body system. Besides,

rotational symmetry for this multiplet is already restored within one decimal digit accuracy for

Na ≈ 14 fm, due to the more localized spatial distribution of the wavefunctions, see Fig. 30. The

infinite-volume value of the average α−α distance for the states of these multiplets is 4.40 fm, in

between the one of the 0+1 and the 3−1 multiplets.
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Figure 31: Average value of the squared
angular momentum for the six bound
states as a function of the lattice size.
After displaying a peak in the interac-
tion region, the average values of the
squared angular momentum for the 0+1 ,
2+1 and 3−1 states converge to the eigen-
values of L2 equal to 0, 6 and 12 units
of ~2 respectively in the infinite-volume
limit. The multiplet averages of the 2+1
and 3−1 states are denoted by solid and
densely dotted lines.

The average values of the angular momentum as function of the lattice size N for both the

three SO(3) multiplets considered display a well-developed maximum at about N = 7, eventually

followed by a shallow minimum lying between N = 15 and N = 20. In particular, the angular

momentum of the 0+1 state reaches the expected asymptotic value from below, as observed in the

beryllium case (cf. Fig. 5), while the 2+E and 2T2
multiplets approach the continuum and infinite

volume limit from below and above, respectively. This suggests the sign of the leading order finite

volume corrections for the eigenvalues of the L2 operator. Although the L2 evolution curves for

the three SO(3) multiplets resemble the ones of the 0+1 and 2+1 states of the 8Be nucleus, cf. Fig. 5,

the E and the A2 levels for N . 14 seem to be heavily affected by level crossings with adiacent

energy states (note that a spike marking the 2+E evolution curve at N = 11 has been omitted).

Next, we concentrate the attention to the systematic errors due to finite lattice spacing. By fixing
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the size of the lattice at Na ≥ 19 fm in order to reduce finite-volume errors to the third decimal

digit, we inspect the behaviour of the energy eigenvalues of the aforementioned 0+1 , 2+1 and 3−1

multiplets for lattice spacings a ranging from 0.65 to 3.50 fm. From the plot in Fig. 32, the

0+A1
state already equates the fitted energy eigenvalue of −7.65 MeV within one and two decimal

digit precision at a ≈ 1.15 and 1.00 fm, whereas the two members of the 2+1 multiplet become

degenerate within the same accuracy for a = 1.30 and 0.75 fm respectively.
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Figure 32: Behaviour of the energies of the 0+1 and
2+1 eigenstates as a function of the lattice spacing for
Na ≥ 19 fm. Although the multiplet-averaged 2+1
energy (solid line) improves the convergence rate to
the continuum and infinite-volume counterpart, for
a & 2.0 fm discretization corrections amount to more
than 33% of the asymptotic energy eigenvalue.
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Figure 33: Behaviour of the average α − α distance
of the 0+1 and 2+1 eigenstates as a function of the lat-
tice spacing for Na ≥ 19 fm. It is worth observing
that the values of R to which the 2+E and the 2+T2

states seem to converge do not coincide by an amount
of 0.06 fm. It is possible that this small bias is due
to residual finite-volume effects, since, as noticed in
Fig. 29, for a = 0.5 fm and N = 31 the two average
interparticle distances differ still by 0.24 fm. Never-
theless, the other observables concerning this angular
momentum multiplet, cf. Figs 32 and 37, perhaps less
sensitive to finite-volume effects, do not display this
behaviour in the small-spacing limit.

As outlined in Sec. 7, some of the minima of the energy curves can be associated to the values

of the lattice spacing that permit the inclusion of relative maxima of the probability distribution

functions of the states into the lattice. Differently to the two-body case, the 12C eigenfunctions

may possess a huge amount of local extrema and display rather complex spatial distributions,

thus making the analysis of the PDF maxima by far more involved than in the beryllium case, see

Figs. 34-38. Since the interactions are isotropic, the most probable separation distance between

any of the pairs of α particles is expected to coincide exactly for all the eigenfunctions belonging

to the same SO(3) multiplet in the zero-spacing limit.

Contrary to the beryllium case, the PDF of the ground state of this nucleus has a local non-zero

minimum when r13 = r23 = (0, 0, 0), meaning that configuration in which all the α particles com-

pletely overlap has become unstable. In addition, the squared modulus of the 0+1 wavefunction

possesses also maxima, the absolute ones corresponding to equilateral triangular equilibrium con-
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minimum of the energy eigenvalue of the multiplet between a = 2.25 and 2.3 fm is shifted by

about 0.2 fm from the nearest minimum of V , the remaining two energy minima at a ≈ 1.45 and

3.15 fm are in good correspondence with the ones of the average values of the potential energy.

Concerning the avreage values of the interparticle distance, the agreement between R at a ≈ 2.3

and 3.15 fm and d∗ is worse than in the previous case (cf. Fig. 37), due to the spatial distribution

of the 3−T2
wavefunctions.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

10

12

14

16

a [fm]

~
−
2
L2

A1

E
T2

Figure 39: Behaviour of the average vaules of the
squared total angular momentum of the 0+1 and 2+1
eigenstates as a function of the lattice spacing for
Na ≥ 19 fm.

0 0.5 1 1.5 2 2.5 3 3.5 4

10

12

14

16

18

20

22

24

26

28

30

a [fm]

~
−
2
L2

A2

T1

T2

Figure 40: Behaviour of the squared total angular mo-
mentum of the 3−1 eigenstates as a function of the lat-
tice spacing for Na ≥ 19 fm. Even if slowly, con-
vergence of the average values of L2 to its expected
eigenvalues is attained in the zero-spacing limit.

Switching now to the average values of the squared total angular momentum, the convergence

rate of the 0+1 and 2+1 states to the expected L2 eigenvalues is sensibly slower than the one of the

homologous states of beryllium, cf. Fig. 13. In particular, one decimal digit agreement between

the L2 average value on the ground state and the expected eigenvalue is reached for a ≈ 1.0 fm,

whereas two decimal digit precision is attained only at a ≈ 0.65 fm. Besides, for the 2+1 multiplet

one decimal digit precision in the angular momentum estimation is reached only at a ≈ 0.70 fm,

even if, for the T2 multiplet convergence is slightly faster, as observed in the −3.3 MeV multiplet

of 8Be (cf. Fig. 13).

For the 3−1 state the situation is similar, since one-digit precision in the estimation of the eigenvalue

of the squared total angular momentum is reached only at a = 0.85, 0.80 and 0.75 fm for the 3−A2
,

3−T1
and 3−T2

multiplets respectively. Contrary to the case of the 0+1 and 2+1 states of 8Be, it turns

out that the computation of the average values of L2 does not provide more precise information

on the transformation properties of the group of states under SO(3) rotations, since the energies

themselves become degenerate with greater accuracy at larger lattice spacings.

Nevertheless, by subtracting the expected squared angular momentum eigenvalues from the L2

average values and then taking the absolute value the observations on the asymptotic corrections

to the latter in Sec. 7 find another confirmation. If the spacing is small enough, i.e. a . 1.4 fm
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for the 0+1 and 2+1 states or a . 1.3 fm for the 3− multiplet, the log |∆L2| behave almost linearly

with the lattice spacing, with a positive slope, see Fig. 41.
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Figure 41: Difference between the aver-
age value and the expected eigenvalue of
the squared angular momentum for the
2+1 (left) and the 3−1 states (right) as a
function of the lattice spacing. The same
convention on the markers for the cubic
group irreps of Figs. 33-36 is understood.
It is worth remarking that the deviations
from linearity for small values of the spa-
cing in the 2+E curve (cf. the left panel
of the figure) are sensibly larger than the
ones of the other multiplets, an effect per-
haps due to residual finite-volume effects.

9. Conclusion

The transposition of any physical system on a cubic lattice may yield to shifts in the eigen-

values and in the average values of operators, due to finite volume and discretization effects. In

particular, the breaking of rotational symmetry into cubic group summetry affects the average

values of all the operators transforming as spherical tensors under the elements of SO(3) [49].

Nevertheless, the construction of the lattice counterpart of the squared total angular momentum

operator allows for an unambiguous identification of the lattice Hamiltonian eigenstates in terms

of SO(3) irreps, provided the spatial distribution of the eigenfunctions is localized and smooth

enough to fit the size and the spacing of the lattice. This is exactly the case of the 2+E and 2+T2

multiplets of 8Be, where the average value of the squared angular momentum operator reaches

its expectation value with deviations of 0.01% already at a ≈ 1.8 fm, see Fig. 13, a spacing for

which the energy eigenvalues of the two multiplets are still separated by more than 2 MeV, Fig. 7.

Furthermore, the asymptotic finite volume corrections to the average values of the squared angular

momentum operator approximately fit a negative exponential of the lattice size (cf. Figs. 6 and

18), like the leading-order ones for the energy [12]. Discretization corrections for the average val-

ues of the same operator turned out also to depend exponentially on a in the zero lattice-spacing

limit, although with a positive decay constant (cf. Figs. 18 and 41).

Besides exploring the role of L2 in the classification of the lattice Hamiltonian eigenstates in terms

of the angular momentum quantum number, the model offered us also the possibility to test the

interpretation of the local minima of energy eigenvalues in terms of the spatial distribution of the

relevant eigenfunctions (cf. the 4+2 and the 6+1 multiplets of 8Be and the 0+1 , 2+1 and 3−1 multiplets

of 12C) as well as the results presented in Ref. [48] (cf. the 0+1 and 2+1 states of 8Be). In case

a local maximum of the squared modulus of a lattice eigenfunction is included within the mesh
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points, in fact, the corresponding energy eigenvalue as a function of the lattice spacing displays a

minimum.

Moreover, we have shown that the use of multiplet-averaging (cf. Sec. 5.3) for the energies and the

average values of the squared angular momentum for states with ℓ = 0, 2, 3, 4 and 6 (cf. Secs. 7

and 8) reduces both discretization and finite-volume effects by evening the fluctuations about the

continuum and infinite-volume counterparts, as predicted in Ref. [48].

Likewise interesting are the computational implications of this work. In the attempt of suppressing

both discretization and finite-volume effects for the three-body system, considerable efforts have

been devoted in developing memory-saving and fast codes for the diagonalization of the lattice

Hamiltonian. The final choice of the Lanczos algorithm and of the GPU as a support for the

state vectors processing permitted us to monitor the evolution of the eigenergies and the average

values of other physical observables concerning six bound state multiplets of the 12C nucleus for

a significant range of box-sizes and spacings. In addition, the extensive usage of projectors in the

iterative diagonalization process allowed us to extend the analysis of Ref. [48] to higher angular

momentum multiplets, both for the 8Be and the 12C, discarding all the possible intermediate states

devoid of the desired transformation properties under the elements of the permutation group and

the cubic group. Eventually, the diagonalization techniques outlined here are expected to pave

the way for the investigation of lattice artifacts on the spectrum of a four-body system, the 16O,

subject of a forthcoming paper.
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Appendix A. Technicalities

Appendix A.1. Discretization of derivatives

In the lattice environment, spatial derivatives have to be naturally expressed in terms of finite

differences. As a consequence, all the differential operators are represented by non-commuting

matrices, whose non diagonal elements are collectively referred as hopping terms. For the discret-

ization of all the differential operators of interest the improvement scheme presented in sect. 9.1.1

[36] is implemented.
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Any given C2K function f(x±ka) on the lattice with k ∈ K admits a Taylor expansion about any

point x of its domain,

f(x± ka) = f(x)± kaf (1)(x)+
k2a2

2!
f (2)(x)± k3x3

3!
f (3)(x)+ ...± (ka)2K−1

2K − 1!
f (2K−1)(x)+O(a2K) .

(A.1)

From the subtraction of f(x − ka) from f(x + ka), it is possbile to construct an aprroximation

scheme for the first derivative,

f−
ka ≡ f(x+ ka)− f(x− ka) = 2kaf (1)(x) + 2

k3a3

3!
f (3)(x)

+ 2
k5a5

5!
f (5)(x) + . . .+ 2

(ka)2K−1

2K − 1!
f (2K−1)(x) +O(a2K+1)

(A.2)

whose truncation error is given by O(a2K+1). Summing up a linear combination of f−
ka with k

ranging from 1 to K, in fact, all the contributions from the odd derivatives up to order 2K − 1 in

the discretized expression of the first derivative can be ruled out,

K
∑

k=1

C
(1,K)
k f−

ka = 2af (1)(x)

K
∑

k=1

C
(1,K)
k k + 2

a3

3!
f (3)(x)

K
∑

k=1

C
(1,K)
k k3

+ . . .+ 2
a2K−1

2K − 1!
f (2K−1)(x)

K
∑

k=1

C
(1,K)
k k2K−1 +O(a2K+1) .

(A.3)

At this stage, it is sufficient to impose to the unknown coefficients C
(1P,K)
k the following constraints,

K
∑

k=1

C
(1,K)
k k2l−1 =







1/2a if l = 1

0 if 2 ≤ l ≤ K
(A.4)

in order to recover the desired approximated expression for f (1)(x),

f (1)(x) ≈
K
∑

k=1

C
(1,K)
k f−

ka . (A.5)

Analytically, the coefficients take the form

C
(1,K)
k = (−1)k+1 1

2a

2

k

(K!)2

K + k!K − k!
(A.6)

as it can be proven by solving the associated linear system in Eq. (A.4) with the Cramer’s rule

and recalling the determinant formulas for Vandermonde-like matrices.

On the other hand, the sum between f(x−ka) and f(x+ka), permits to derive the aprroximation

scheme for the second (pure) derivative,

f+
ka ≡ f(x+ ka) + f(x− ka) = 2f(x) + k2a2f (2)(x)

+ 2
k4a4

3!
f (4)(x) + 2

k6a6

6!
f (6)(x) + . . .+ 2

(ka)2K

2K!
f (2K)(x) +O(a2K+2)

(A.7)
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whose truncation error is given by O(a2K+2). Again, summing a linear combination of f+
ka with

k ranging from 1 to K, in fact, all the contributions from the even derivatives up to order 2K to

the discretized expression of the second derivative can be cancelled in the same fashion,

K
∑

k=1

C
(2P,K)
k f+

ka = 2f(x)
K
∑

k=1

C
(2P,K)
k + a2f (2)(x)

K
∑

k=1

C
(2P,K)
k k2

+ 2
a4

4!
f (4)(x)

K
∑

k=1

C
(2P,K)
k k4 + . . .+ 2

a2K

2K!
f (2K)(x)

K
∑

k=1

C
(2P,K)
k k2K +O(a2K+2) .

(A.8)

The constraints on the C
(2P,K)
k are, now,

K
∑

k=1

C
(2P,K)
k k2l =







1/a2 if l = 1

0 if 2 ≤ l ≤ K,
(A.9)

and enable us rewriting the second (pure) derivative on the lattice as

f (2)(x) ≈ C
(2P,K)
0 f(x) +

K
∑

k=1

C
(2P,K)
k f+

ka , (A.10)

where a coefficient for the diagonal term of the discretized operator has been introduced as in [48],

C
(2P,K)
0 = −2

K
∑

k=1

C
(2P,K)
k . (A.11)

Solving the linear system associated to the coefficients with nonzero subscript in Eq. (A.9), the

analytic expression of the C
(2P,K)
k ’s can be obtained,

C
(2P,K)
k = (−1)k+1 1

a2
2

k2
(K!)2

K + k!K − k!
. (A.12)

Equipped with the approximation schemes for both the first and the second derivatives of a

function of one variable, we conclude the section with the treatment of second mixed derivatives.

Denoting henceforth the mixed derivatives of an analytic function in two variables (x,y) as

∂m+n

∂mx∂ny
f(x, y) = f (m,n)(x, y) , (A.13)

the Taylor expansion of the two-variables functions f(x± ka, y± ka) and f(x± ka, y∓ ka) about

(x, y) can be written as

f(x± ka, y ± ka) = f(x, y)± ak[f (1,0)(x, y) + f (0,1)(x, y)]

+
a2k2

2
[f (2,0)(x, y) + 2f (1,1)(x, y) + f (0,2)(x, y)]

±a3k3

2
[f (3,0)(x, y) + 3f (2,1)(x, y) + 3f (1,2)(x, y) + f (0,3)(x, y)]

+ · · ·+ a2Kk2K

2K!

2K
∑

i=0

(

2K

i

)

f (2K−i,i)(x, y) +O(a2K+1) ,

(A.14)
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and
f(x± ka, y ∓ ka) = f(x, y)± ak[f (1,0)(x, y)− f (0,1)(x, y)]

+
a2k2

2
[f (2,0)(x, y)− 2f (1,1)(x, y) + f (0,2)(x, y)]

±a3k3

2
[f (3,0)(x, y)− 3f (2,1)(x, y) + 3f (1,2)(x, y)− f (0,3)(x, y)]

+ · · ·+ a2Kk2K

2K!

2K
∑

i=0

(

2K

i

)

(−1)if (2K−i,i)(x, y) +O(a2K+1) ,

(A.15)

respectively. Now, by defining the following fourfold combination of displaced functions,

fM
ka ≡ f(x+ ka, y + ka)− f(x− ka, y + ka)− f(x+ ka, y − ka) + f(x− ka, y − ka) (A.16)

an expression for the second mixed derivative f (1,1)(x, y) in terms of mixed derivatives of higher

order can be recovered,

K
∑

k=1

C
(2M,K)
k fM

ka = 4a2f (1,1)(x)

K
∑

k=1

C
(2M,K)
k k2 + 4

a4

3!
[f (1,3)(x) + f (3,1)(x)]

K
∑

k=1

C
(2M,K)
k k4

+ . . .+ 4
a2K

2K!

K
∑

i=1

(

2K

2i− 1

)

f
(2K−2i+1,

2i−1) (x)
K
∑

k=1

C
(2M,K)
k k2K +O(a2K+2) .

(A.17)

Thus, aiming at rewriting the latter as a superposition of fM
ka ’s truncated to order 2K,

f (1,1)(x) ≈
K
∑

k=1

C
(2M,K)
k fM

ka , (A.18)

we get the following contraints on the coefficients of the expansion

K
∑

k=1

C
(2M,K)
k k2l =







1/4a2 if l = 1

0 if 2 ≤ l ≤ K.
(A.19)

The solution of the linear system associated to the latter equation coincides with the one of the

preceeding case except for a factor 1/4,

C
(2M,K)
k = (−1)k+1 1

4a2
2

k2
(K!)2

K + k!K − k!
. (A.20)

From a direct comparison between the expansion coefficients of the three differential operators,

the following relationship,

C
(1,K)
k =

ak

2
C

(2P,K)
k = 2ak C

(2M,K)
k , (A.21)

can be inferred, thus allowing for a quicker evaluation of the former (cf. Tab. A.4).

Moreover, the discretization scheme for the first derivatives can be likewise exploited for the defin-

ition of second mixed derivatives on the lattice, thus expressing f (1,1)(x, y) in terms of K(K − 1)

hopping terms of the kind f(x +ma, y + na). Although straightforward, this alternative imple-

mentation is slower than the one presented here, due to repeated loops over non-diagonal terms.
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K 1 2 3 4 5

C
(1,K)
1

1
2

2
3

3
4

4
5

5
6

C
(1,K)
2 - 1

12 - 3
20 -15 - 5

21

C
(1,K)
3

1
60

4
105

5
84

C
(1,K)
4 - 1

280 - 5
504

C
(1,K)
5

1
1260

Table A.4: Coefficients for the discretization of first derivatives with K ≤ 5 and unitary lattice spacing.

Even if in most of the calculations the derivative improvement index K has been kept equal

to 4, a source of concern can be the convergence of the Taylor expansions of the functions (cf.

Eqs. (A.1), (A.14) and (A.15)). However the second derivative improvement scheme in the limit

K → ∞ converges uniformly to the exactly quadratic operator in the momentum space over the

Briullouin zone [48]. Furthermore, both the exact kinetic energy in momentum space and the

respective discretized operator in the configuration space in the latter limit gave no evidence of

convergence or stability issues.

Appendix A.2. The cubic group

In this section a short review on the cubic group is given, together with the transformation

table for basis states of SO(3) irreps with ℓ ≤ 8 into the O ones.

E 6C ′′
2 3C2

4 (π) 8C ′
3 6C4(

π
2 )

(0, 0, 0) (0, π, π2 ) (π, π, 0) (π2 ,
π
2 , π) (π2 ,

π
2 ,

3π
2 )

(0, π, π2 ) (0, π, 0) (π, 3π2 , 3π2 ) (3π2 , π2 ,
π
2 )

(0, π, 3π2 ) (π, 0, 0) (π, 3π2 , π2 ) (π, π2 , π)

(3π2 , π2 ,
3π
2 ) (3π2 , π2 , π) (π, 3π2 , π)

(0, π2 , π) (π, π2 ,
3π
2 ) (π2 , 0, 0)

(π, π2 , 0) (π2 ,
3π
2 , π) (3π2 , 0, 0)

(π, π2 ,
π
2 )

(3π2 , 3π2 , π)

Table A.5: Rappresentation of the group. The elements belonging to each of the conjugacy classes are listed as
terns of Euler angles. Accordingly the symmetry operation (α, β, γ) consists of a rotation of angle γ about the z
lattice axis, followed by one of angle β about the y axis and by another of angle α about the z axis.

The group in analysis consists of 24 rotations about the symmetry axes of the cube (or the

octahedron), subdivided into five equivalence classes. Adopting Schönflies notation [73], E rep-

resents the identity, 3C2
4 (π) the rotations of 180◦ about the three fourfold axes orthogonal to the

faces of the cube (i.e. the lattice axes), 6C4(π/4) the 45◦ and 135◦ rotations about the latter axes
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(6 elements), 6C ′′
4 the 180◦ rotations about the six diagonal axes parallel to two faces of the cube

and 8C ′
3(2π/3) are rotations of 120◦ and 240◦ about the four diagonal axes passing to opposite

vertexes of the lattice (8 elements).

Moreover, the characters of the 5 irreducible representations of O are presented in Tab. A.6. In

the same table are also presented the characters of 2ℓ + 1-dimensional irreps of SO(3), that, as

known, induce reducible representations of the cubic group.

Γ E 6C ′′
2 3C2

4 (π) 8C ′
3 6C4(

π
2 )

A1 1 1 1 1 1
A2 1 -1 1 1 -1
E 2 0 2 -1 0
T1 3 -1 -1 0 1
T2 3 1 -1 0 -1

Dℓ 2ℓ+ 1 (−1)ℓ (−1)ℓ 1−mod(ℓ, 3) (−1)[
ℓ
2
]

Table A.6: Character table of the cubic group. The characters of the 2ℓ+1-dimensional irrep of SO(3) with respect
to cubic group operations. With the exception of the ℓ = 0, 1 cases, this representation is fully reducible with
respect to the O operations.

The full decomposition of the 2ℓ+1-dimensional irreps of the rotation group, whose result for

ℓ ≤ 8 are presented in Tab. 1, can be carried out by means of the Great Orthogonality Theorem

for characters: if

Dℓ =
∑

⊕

qνD
ν (A.22)

is the decomposition of the irrep ℓ of SO(3) into the #Cl cubic group irreps, the multiplicity of

the latter is given by

qν =
1

|O|

#Cl
∑

i=1

|Cli|[χν
i ]

∗χℓ
i (A.23)

where the order of O is at the denominator, while χν
i and χℓ

i are respectively the characters of the

irreps of the cubic and the rotation group related to the conjugacy class Cli with |Cli| elements. In

particular, the map between the basis states of the latter and the SO(3) ones can be reconstructed

via the projectors in Eq. (40). Denoting with T
(k)
q the q component of a spherical tensor of rank

2k + 1, the generic component of the irreducible cubic tensor obtained from it is

T (Γ,k)
q =

k
∑

q′=−k

∑

g∈O

χΓ(g)D
k
qq′(g)T

(k)
q′ (A.24)

where the index q ranges from −k to k. Conversely, the transpose transformation rule holds for

the basis states of the two groups,

|ℓ,Γ,m〉 =
ℓ
∑

m′=−ℓ

∑

g∈O

χΓ(g)D
ℓ
m′m(g)|ℓ,m′〉. (A.25)

51



Due to rank deficiency of the projector, the label k in the cubic tensor does not represent any

more its effective rank, but only the original irrep of SO(3) from which it has been obtained: the

descent in symmetry, in fact, constrains the maximum rank of any irreducible tensor operator to

run from one to three. As noticed in Sec. 4 for the energy eigenstates, the non-null components

q of T (Γ,k) and |Γℓ〉, admixture of the q mod 4 components of their SO(3) counterparts, can be

univocally labeled with the Iz quantum number. The ensuing distribution of m components of

a spin-l irrep into the (ℓ,Γ) irreps of the cubic group is known under the name of subduction

[46]. Furthermore, when the occurrence coefficient qΓ the irrep Γ of O is greater than one, fur-

ther linear combinations on the outcoming states (cf. Eq. (A.24)) or cubic tensor components

(cf. Eq. (A.25)) should be considered, in order to block-diagonalize the relevant projector and

disentangle the repeated multiplets of states.
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