000858998 001__ 858998
000858998 005__ 20240619091240.0
000858998 0247_ $$2doi$$a10.1021/acs.jpca.8b09479
000858998 0247_ $$2ISSN$$a1089-5639
000858998 0247_ $$2ISSN$$a1520-5215
000858998 0247_ $$2pmid$$apmid:30403866
000858998 0247_ $$2WOS$$aWOS:000452693200012
000858998 0247_ $$2altmetric$$aaltmetric:51481577
000858998 037__ $$aFZJ-2018-07824
000858998 041__ $$aEnglish
000858998 082__ $$a530
000858998 1001_ $$0P:(DE-Juel1)174239$$aNiederländer, Benjamin$$b0$$ufzj
000858998 245__ $$aOptimized Continuous Application of Hyperpolarized Xenon to Fluids
000858998 260__ $$aWashington, DC$$bSoc.$$c2018
000858998 3367_ $$2DRIVER$$aarticle
000858998 3367_ $$2DataCite$$aOutput Types/Journal article
000858998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547621664_18954
000858998 3367_ $$2BibTeX$$aARTICLE
000858998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858998 3367_ $$00$$2EndNote$$aJournal Article
000858998 520__ $$aIn recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g., cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e., molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129Xe continuously at small adjustable pressures and in a polarization-preserving way. The membrane unit enables a molecular solution of the HP-gas in aqueous liquids, avoiding the formation of bubbles or even foams. Two different types of compressors were tested in terms of function and useful materials. Special emphasis was put on a systematic reduction of transfer losses in the gas and liquid phase. In order to optimize the system parameters, several physical models were developed to describe the transport and the losses of nuclear polarization. Finally, the successful implementation was demonstrated in several experiments. HP-Xe was dissolved in an aqueous cryptophane-A-(OCH2COOH)6 solution, and stable Xe signals could be measured over 35 min, only limited by the size of the gas reservoir. Such long and stable experimental conditions enabled the study of chemical exchange of xenon between cryptophane and water environments even for a time-consuming 2D NMR experiment. The good signal stability over the measurement time allowed an exact determination of the residence time of the Xe atom inside the cryptophane, resulting in an average residence time of 44.5 ± 2.7 ms.
000858998 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000858998 588__ $$aDataset connected to CrossRef
000858998 7001_ $$0P:(DE-HGF)0$$aP, Bluemler$$b1$$eCorresponding author
000858998 7001_ $$0P:(DE-HGF)0$$aBrotin, T.$$b2
000858998 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b3
000858998 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4$$ufzj
000858998 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b5
000858998 7001_ $$0P:(DE-HGF)0$$aHeil, W.$$b6
000858998 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/acs.jpca.8b09479$$gVol. 122, no. 48, p. 9359 - 9369$$n48$$p9359-9369$$tThe journal of physical chemistry <Washington, DC> / A$$v122$$x1089-5639$$y2018
000858998 8564_ $$uhttps://juser.fz-juelich.de/record/858998/files/acs.jpca.8b09479.pdf$$yRestricted
000858998 8564_ $$uhttps://juser.fz-juelich.de/record/858998/files/acs.jpca.8b09479.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858998 909CO $$ooai:juser.fz-juelich.de:858998$$pVDB
000858998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174239$$aForschungszentrum Jülich$$b0$$kFZJ
000858998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b3$$kFZJ
000858998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000858998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b5$$kFZJ
000858998 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000858998 9141_ $$y2018
000858998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM A : 2017
000858998 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858998 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858998 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858998 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858998 920__ $$lyes
000858998 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000858998 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000858998 980__ $$ajournal
000858998 980__ $$aVDB
000858998 980__ $$aI:(DE-Juel1)IBG-2-20101118
000858998 980__ $$aI:(DE-Juel1)ICS-8-20110106
000858998 980__ $$aUNRESTRICTED
000858998 981__ $$aI:(DE-Juel1)IBI-3-20200312