001     858998
005     20240619091240.0
024 7 _ |a 10.1021/acs.jpca.8b09479
|2 doi
024 7 _ |a 1089-5639
|2 ISSN
024 7 _ |a 1520-5215
|2 ISSN
024 7 _ |a pmid:30403866
|2 pmid
024 7 _ |a WOS:000452693200012
|2 WOS
024 7 _ |a altmetric:51481577
|2 altmetric
037 _ _ |a FZJ-2018-07824
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Niederländer, Benjamin
|0 P:(DE-Juel1)174239
|b 0
|u fzj
245 _ _ |a Optimized Continuous Application of Hyperpolarized Xenon to Fluids
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547621664_18954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g., cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e., molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129Xe continuously at small adjustable pressures and in a polarization-preserving way. The membrane unit enables a molecular solution of the HP-gas in aqueous liquids, avoiding the formation of bubbles or even foams. Two different types of compressors were tested in terms of function and useful materials. Special emphasis was put on a systematic reduction of transfer losses in the gas and liquid phase. In order to optimize the system parameters, several physical models were developed to describe the transport and the losses of nuclear polarization. Finally, the successful implementation was demonstrated in several experiments. HP-Xe was dissolved in an aqueous cryptophane-A-(OCH2COOH)6 solution, and stable Xe signals could be measured over 35 min, only limited by the size of the gas reservoir. Such long and stable experimental conditions enabled the study of chemical exchange of xenon between cryptophane and water environments even for a time-consuming 2D NMR experiment. The good signal stability over the measurement time allowed an exact determination of the residence time of the Xe atom inside the cryptophane, resulting in an average residence time of 44.5 ± 2.7 ms.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a P, Bluemler
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Brotin, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 3
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 4
|u fzj
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 5
700 1 _ |a Heil, W.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1021/acs.jpca.8b09479
|g Vol. 122, no. 48, p. 9359 - 9369
|0 PERI:(DE-600)2006031-2
|n 48
|p 9359-9369
|t The journal of physical chemistry / A
|v 122
|y 2018
|x 1089-5639
856 4 _ |u https://juser.fz-juelich.de/record/858998/files/acs.jpca.8b09479.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858998/files/acs.jpca.8b09479.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:858998
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128697
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21