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This work addresses the use of the Gaussian approximation as a common tool to extract atomic
motions in proteins from elastic incoherent neutron scattering and whether improvements in data
analysis and additional information can be obtained when going beyond that. We measured alpha-
lactalbumin with different levels of hydration on three neutron backscattering spectrometers, to be
able to resolve a wide temporal and spatial range for dynamics. We demonstrate that the Gaussian
approximation gives qualitatively similar results to models that include heterogeneity, if one respects
a certain procedure to treat the intercept of the elastic intensities with the momentum transfer axis.
However, the inclusion of motional heterogeneity provides better fits to the data. Our analysis suggests
an approach of limited heterogeneity, where including only two kinds of motions appears sufficient
to obtain more quantitative results for the mean square displacement. Finally, we note that traditional
backscattering spectrometers pose a limit on the lowest accessible momentum transfer. We therefore
suggest that complementary information about the spatial evolution of the elastic intensity close to
zero momentum transfer can be obtained using other neutron methods, in particular, neutron spin-echo
together with polarization analysis. Published by AIP Publishing. https://doi.org/10.1063/1.5049938

I. INTRODUCTION

Neutron scattering techniques have been successfully
employed to study biological systems for about 50 years.1–3

Neutron scattering from any sample gives rise to two contri-
butions, a coherent and an incoherent part.4 Whereas coherent
scattering requires a constant phase relation to be maintained
between the incident and scattered neutron, giving access to
structural or collective motional information, incoherent scat-
tering is a probe of the average motions of individual particles
within the sample and thus molecular dynamics.4 In the present
work, we concentrate on the incoherent part assuming that
most of the signal comes from the dominant incoherent scat-
tering from the sizable number of protons that are distributed
throughout the sample. The incoherent scattering signal can be
further subdivided into an elastic part, corresponding to those
atoms in the sample that move with a characteristic time scale
that falls outside the temporal resolution of the neutron instru-
ment used and thus are not seen to exchange energy with the
neutron upon scattering, called the Elastic Incoherent Neutron
Scattering (EINS), and those whose motions lead to an energy
exchange with the neutron. Traditionally, one distinguishes
here quasi-elastic neutron scattering (QENS), where only
small amounts of energy are exchanged (typically <2 m eV)
and which manifests itself as a broadening of the zero-energy

a)Electronic mail: jpeters@ill.fr

transfer centered elastic peak, from inelastic neutron scattering
(INS), which appears as satellite peaks well separated from
the elastic part and correspond to specific modes or excita-
tions within the sample.4 For the analysis of QENS data, the
approach suggested by Van Hove5 based on pair correlation
functions is most commonly applied and is nearly the exclu-
sive model used so far. Only recently, alternative approaches
were suggested by Frauenfelder et al.6 and Kneller.7 How-
ever, new formalisms have to be tested and validated against
experimental data, which is done in the present study for
EINS.

EINS is generally used to compare the dynamical behav-
ior of biomolecules, especially proteins.3,8,9 For this, mean
square displacements (MSDs) of the atoms in the sample
are extracted over a wide temperature range. The MSDs are
considered as a measure of the sample flexibility at a given
temperature.10 Most biomolecules undergo transitions, which
are also visible in the MSD by a change of the slope. For
instance, proteins show a dynamical transition at around 220 K
which characterizes the crossover from harmonic to anhar-
monic motions.2 Zaccai introduced an empirical parameter,
known as the effective force constant or resilience,11 and it
corresponds to the slope of the MSD before and after the
dynamical transition, which is used to quantify the protein’s
stability in a given state. Similarly, lipids undergo structural
phase transitions which can also be detected by a variation in
the dynamics through a change in the MSD.12 Thus, EINS is
a standard mode of measurement on neutron backscattering
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spectrometers. Despite such a common use, scientists often
compare the MSD obtained from a set of samples measured
under the same conditions and on the same instrument, only.
This is because the obtained absolute values of the MSDs are
not always suited for a quantitative comparison with results
from other techniques. Moreover, if one searches for spe-
cific motions whose amplitudes are known, as for instance
to differentiate 2- or 3-site jump motions,13 precise spatial
information would be highly desirable. The aim of the present
study is thus to improve the data evaluation and to obtain
more certainty about the quantitative accuracy of MSD anal-
ysis and results. Such results could, in addition, be used to
validate molecular dynamics simulations and force fields, as
both approaches give access to the same time scales as neutron
scattering.

To date, there is no complete model taking into account
all possible dynamic contributions to the EINS. As a stan-
dard, the Gaussian Approximation (GA) is used to extract the
MSD of the elastic data.14 The limits of the applicability of
the models are not always clear and respected such that the
way in which they are implemented may seem sometimes
arbitrary with full details lacking in many publications. As
long as different samples are analyzed in exactly the same
way and compared to each other, it may appear to be con-
sistent, but it makes it difficult to compare the results from
different samples, spectrometers, and experimental groups.15

In particular, using different neutron spectrometers is impor-
tant for two main reasons. First, each instrument has a specific
energy resolution providing access to different dynamical time
scales, and second, each instrument has a specific range of
accessible scattering angles, which define the spatial infor-
mation probed. For the first effect, Doster et al. proposed
an analysis via elastic resolution spectroscopy in 200116 and
connected it to temperature scans via a scaling function in
2013.8

While the different temporal regimes’ information
accessed by different neutron spectrometers (different energy
resolutions) makes them complementary, the full spatial infor-
mation accessible on the different instruments due to the range
of scattering angles (transformed into momentum transfer Q
in reciprocal space) is often redundant, mainly due to theoret-
ical applicability of the GA. Indeed, the GA is in general only
valid in a restricted region of Q, specifically at low Q values,17

since it is neglecting any effects from anharmonicity, hetero-
geneity, and anisotropy.18 To date, limited efforts have been
devoted to developing approaches that model EINS data over
a wider momentum transfer window, explore the effects of
these three aspects, and question whether extra information is
contained in the higher Q regime. Anharmonicity of motions
was introduced in a model by Doster et al.2 and described
in terms of a double-well potential. The introduction of het-
erogeneity of motions found to be the main reason for the
non-Gaussian behavior19 has been approached in two ways.
In the publications of Becker and Smith20 and more recently
Yi et al.,21 a second term of a series expansion is included
to describe the standard deviation of the MSD, whereas the
GA uses only the first term of a cumulant expansion. Similar
expansions were already proposed earlier by Rahman22 and
Sköld et al.23 although they did not relate them explicitly to

dynamical heterogeneity. The alternative approach consists in
describing the heterogeneity by assuming different forms of
the distribution. Nakagawa et al. compared a bimodal, expo-
nential, and Gaussian distribution.24 Meinhold et al. used a
Weibull distribution,25 and Peters and Kneller used a gamma
distribution26 based on the work of Kneller and Hinsen.27 Most
recently, a bimodal Gaussian distribution was investigated by
Vural et al.28 Doster also addressed the issue of protein dynam-
ical heterogeneity by suggesting three different approaches to
it.29 His main conclusion was to say that data can be fitted
as successful when heterogeneity is reduced to two kinds of
molecular processes, one corresponding to translational and
the other to rotational (coming mainly from methyl groups)
motions, the latter being non-Gaussian scattering processes.
The former models assume, by contrast, a distribution of purely
Gaussian motions, which according to Refs. 19 and 30 is also
a good approximation when the motions are anharmonic. All
the aforementioned models can describe EINS data over an
extended Q-range to a greater or lesser extent. In the present
study, we will therefore investigate four different models to
analyze the same set of EINS data to not only substantiate
limits of applicability but also arrive at their advantages and
disadvantages by considering data from different instruments
and under different experimental conditions. The models to be
assessed are GA, Yi et al. (Yi), Peters et al. (PK), and Doster
et al. (Do), and a subset is chosen to represent the different
approaches.

As the experimental dataset, we choose to measure the
MSD of a simple protein powder at different levels of hydra-
tion on various instruments. We selected a small commercially
available protein: Alpha-lactalbumin (A-L). It is a globular
protein (molecular weight of 14.2 kDa), which regulates lac-
tose synthase and can be found in all mammalian milk. It
can strongly bind calcium Ca2+, but also other metal ions
like magnesium. The hydration conditions chosen are ≈0
(dry), 0.4, and 0.8 g D2O/g protein. Data were collected
using three neutron backscattering spectrometers covering a
wide temporal range, IN13 at the Institut Laue Langevin
(ILL) in Grenoble, France, SPHERES operated by JCNS at
the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Ger-
many, and OSIRIS at the STFC Rutherford Appleton Lab-
oratory ISIS in Oxfordshire, UK. They correspond to the
most common type of neutron backscattering instruments used
for EINS experiments. SPHERES and OSIRIS use crystal
analyzers that reflect cold neutrons (λ of 6.27 and 6.66 Å,
respectively) and therefore access a limited Q-range (up to
1.8 Å−1), whereas IN13 uses a thermal neutron crystal ana-
lyzer (λ of 2.23 Å), resulting in the largest available Q-range
for a neutron backscattering instrument (up to 4.9 Å−1). In
addition, the instruments have different energy resolutions
allowing access to motions from a few picoseconds to a few
nanoseconds.

The aim of this study is to test the applicability and deter-
mine the limitations of four distinct EINS models with respect
to different samples and neutron instruments. As we will show,
in some cases, clear conclusions can be made, and in others,
we simply point out the limitations and let the reader choose
the best data analysis method according to priorities imposed
by the experiment.
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II. MATERIALS AND METHODS
A. Sample preparation

The sample, Ca2+ depleted A-L, for which all calcium
atoms have been purged from A-L, was bought from Sigma-
Aldrich as a lyophilized powder and was used without further
purification. According to the supplier, the powder might con-
tain traces of ammonium sulfate or sodium phosphate. Such
buffers can contribute to small spurious effects at low tem-
peratures,8 but such investigation was beyond the scope of
the study. Here, we compared three different levels of hydra-
tion, i.e., h ≈ 0 (dry), h = 0.4, and h = 0.8, with h designating
g D2O/g of dry powder. The dry sample represents the case
where only harmonic motions are present up to room temper-
ature. 0.4h corresponds to about one or two layers of water
on the protein surface,31 sufficient to allow for anharmonic
motions above the dynamical transition temperature. 0.8h rep-
resents a gel close to full hydration. In neutron experiments,
one often uses D2O instead of H2O as the solvent since the scat-
tering contribution will be small compared to the very large
incoherent scattering contribution from the hydrogens within
the protein.32 To prepare the hydrated samples, the lyophilized
dry protein powder was placed in an open flat aluminum sam-
ple holder and in a desiccator over D2O and the final hydration
level was checked by weighing the sample periodically. When
the desired uptake was reached, the sample holder was vac-
uum sealed with an indium wire. Aluminum is the preferential
material for this type of neutron experiments since it is mainly
transparent to neutrons, and thus, its contribution to the scat-
tering signal will be negligible. The amount of protein in each
sample was close to 100 mg. The sample transmissions, as
measured on the IN13 spectrometer, were between 92% and
96%, and therefore, no correction for multiple scattering was
applied.

B. Elastic incoherent neutron scattering experiment

The measurements were carried out on IN1333 (data
are available in Ref. 34), SPHERES,35,36 and OSIRIS37

with the characteristic energy resolution ∆Eres and maximal
used momentum transfer, Q, ranges being given in Table I.
SPHERES is a reactor-based neutron backscattering spectrom-
eter which uses Si111 analyzer crystals to achieve a sub-µeV
resolution, similar to IN16B at the ILL and HFBS at the NIST
Center for Neutron Research in Gaithersburg, MD, USA. Due
to the instrument design constraints, these spectrometers suffer
from slightly degraded energy resolution at the low angles and
sometimes lower flux in the first detectors. OSIRIS is a time-of-
flight near-backscattering neutron spectrometer at a spallation

source. It utilizes PG002 analyzer crystals, and while it affords
lower energy resolution than SPHERES, it has a larger neutron
flux at the sample position and constant∆E across the detector
bank. Finally, IN13 is a reactor-based neutron backscattering
spectrometer which uses thermal neutrons and a CaF2(422)
analyzer. This analyzer type results in a much larger Q range,
compared to the OSIRIS and SPHERES instruments, but, con-
sequently, it does suffer worse Q resolution across the detector
bank.

All samples were initially cooled to cryogenic tem-
peratures (<20 K), and then measurements are taken on
warming. At IN13 and SPHERES, the data were collected
while applying a continuous heating gradient. At OSIRIS,
heating was done in steps of 10 K or 20 K and the
measurement was then performed at constant temperature
once the sample temperature had equilibrated. The data
were reduced with LAMP,38 Mantid39 (v3.11.0), and Slaw
(http://apps.jcns.fz-juelich.de/man/slaw.html). Usual data cor-
rections implemented in these packages were applied, includ-
ing a correction for detector efficiency and subtraction of the
empty sample holder. The resulting intensities were normal-
ized to the intensity at the lowest available temperature to
correct for any geometrical effects.

C. Theoretical background and used models

The atomic motions in a given sample, as measured by
neutron spectroscopy, are described by the so-called incoher-
ent dynamic scattering function (DSF) Sinc(Q,ω),

Sinc(Q,ω) =
1

2π

∫ −∞
∞

Iinc(Q, t) exp(−iωt)dt, (1)

where Q is the momentum transfer, ω is the energy transfer
from the neutron to the sample in units of ~, and I(Q, t) is
the incoherent intermediate scattering function for one type of
atom in the classical limit. It is defined as4

Iinc(Q, t) =
1
N

N∑
j=1

〈
exp

{
iQ · rj(t)

}
exp

{
−iQ · rj(0)

}〉
, (2)

where N is the number of atoms in the sample, rj is the position
of each individual atom α, and 〈〉 depicts the statistical average
of the ensemble. In this study, only H atoms are considered
since they have by far the largest incoherent cross section in a
protein.32

In the case of confined motion, as is the case in low
hydrated powders, the Iinc(Q, t) tends to a plateau value for
t → ∞,

TABLE I. Characteristics and sample temperatures measured on each instrument. The time window ∆tres is
calculated using Heisenberg’s uncertainty principle ∆tres ·∆ωres ≥ ~.

Instrument Max. used Q range (Å�1) ∆ωres (µeV) ∆tres T range (K) Heating

OSIRIS (ISIS) 0.30–1.5 25 ≈25 ps 10–310 Steps
IN13 (ILL) 0.49–4.5 8 ≈0.1 ns 20–315 Gradient
SPHERES (MLZ) 0.27–1.9 0.7 ≈1 ns 3–310 Gradient

http://apps.jcns.fz-juelich.de/man/slaw.html
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lim
t→∞

Iinc(Q, t) = Iinc(Q,∞)

=
1
N

N∑
j=1

〈
exp

{
−iQ · rj

}〉〈
exp

{
iQ · rj

}〉
. (3)

Here 2 things were assumed: (1) At t =∞, rj(∞) and rj(0) are
statistically independent and (2) rj(t) is translationally invari-
ant in time such that rj(∞) = rj(0) = rj. Equation (3) can be
rewritten using a cumulant expansion of

〈
exp

{
±iQ · rj

}〉
,

Iinc(Q,∞) =
1
N

N∑
j=1

exp
{
2

[
−Q2ρ2(nq)

+ Q4ρ4(nq) − Q6ρ6(nq) + · · ·
] }

, (4)

where ρi are the moments

ρ2(nq) =
1
2!

〈
(nq · rj)

2
〉
, (5)

ρ4(nq) =
1
4!

{〈
(nq · rj)

4
〉
− 3

〈
(nq · rj)

2
〉2

}
, (6)

. . . ,

Q = |Q|, and nq is the unit vector along Q. In energy space,
this gives rise to the elastic incoherent structure factor (EISF)
Sinc(Q, ω = 0),

Sinc(Q,ω) =
∫ ∞
−∞

dt exp(iωt)I(Q, t)R(t), (7)

Sinc
(
Q,ω ≈ 0,∆ωres = 1/τres

)
=

∫ ∞
−∞

dtI(Q, t)R(t) = AIinc(Q, τres), (8)

Sn
inc(Q,ω ≈ 0) ≡

Sinc(Q,ω ≈ 0,∆ωres)
Sinc(Q = 0,ω ≈ 0,∆ωres)

= Iinc(Q, τres) ≈ Iinc(Q,∞), (9)

where R(t) is the resolution function of the instrument with a
width of τres = ~/ωres due to which the integration over I(Q,
t) is truncated.8,16 A is a convenient normalization factor to
take into account the integration over the instrumental resolu-
tion. Here it is important to mention that the plateau value of
t → ∞ is only reached for an ideal instrument with an energy
resolution of ∆ωres→ 0. Since a value of zero is impossible to
reach, experimentally the value of Sinc(Q,ω ≈ 0) is dependent
on the resolution of the instrument, and therefore to observe
different dynamics, one needs to combine experiments per-
formed using different spectrometers.40,41 In the following,
we suppress the explicit mention of the instrumental resolu-
tion, as done in Eq. (8). Additionally, the QENS signal at zero
frequency (ω = 0) was neglected.

The Gaussian Approximation (GA) uses only the first non-
zero cumulant such that

Sn
inc(Q,ω ≈ 0) ≈ exp

(
−

1
3

Q2
〈
r2

〉
GA

)
, (10)

where
〈
r2

〉
is the atomic mean square displacement (MSD),

which corresponds to the average of the amplitudes of motion
of all atoms within the sample. The GA always holds in the
case of Q2

〈
r2

〉
GA
� 1; since then, the higher cumulant terms

evaluate to zero, and thus, the GA is exact for some spe-
cific cases, i.e., an harmonic solid or an ideal gas. It is by
far the most commonly used model in publications about pro-
tein dynamics investigated with EINS3 and implemented by
fitting ln[S(Q)] vs Q2. However, the choice of the Q-range
used to fit the data and the value of ln[S(Q)] at Q2 = 0 Å−2 is
not always specified nor discussed in publications, neither is
the limit of

〈
r2

〉
GA

Q2
max ≤ 1 justified.42 Furthermore, some-

times this limit is surpassed and the usage of a larger Q2
max

is justified if there is an extended linear behavior of the data
points over wider Q-ranges. However a clear rule is not well
documented.

It is important to note that the factor of 1/3 in front of
the MSD is due to the fact that elastic scattering is time inde-
pendent and a plateau value for the ISF is reached (which is
dependent on the instrument resolution, as mentioned above).
For time resolved measurements [MSD(t)], the factor evaluates
to 1/6.

The assumption of the Gaussian approximation for an
individual atom j is a good approximation beyond low Q out to
Q >
∼ 4 Å−1 for almost all atoms according to Tokuhisa et al.19

and Vural et al.,30 as the higher order terms are negligible
compared to the Q2 term. Moreover, Gaussian heterogeneity
is able to describe approximately non-Gaussian (for instance
rotational) motions, whose importance is well documented by
Liu et al.43 The two main reasons, why the GA might not
be a valid approximation for an individual atom, are large
anharmonic and anisotropic effects. By contrast, Kneller and
Chevrot18 claim that models could be improved by account-
ing for anisotropy, but due to the lack of precision of today’s
available data (neither experimental nor with simulations),
additional parameters cannot be fit unambiguously. In the fol-
lowing, we therefore use two heterogeneity models to verify
these assumptions.

The first heterogeneity model will be referred to as the Yi
model. Applying similar expansions as suggested earlier by
Rahman22 and Sköld et al.,23 Becker and Smith20 introduced
a model beyond the Gaussian approximation within the con-
text of dynamical heterogeneity. Yi et al.21 recently proposed
it as a “simple correction” of the GA which can be written
as

Sn
inc(Q,ω ≈ 0) ≈ exp

(
−

1
3

Q2
〈
r2

〉
Yi

)
·

(
1 +

Q4

18
σ2

Yi

)
, (11)

whereσYi describes the standard deviation of the MSD
〈
r2

〉
Yi

.
It is similar to the expansion of the fourth cumulant term

[Eq. (6), second non-zero term] and the same for Q4

18σ
2
Yi � 1.

The introduction of Q4 accounts for the heterogeneity of the
motions, and the spread of the MSD is described viaσYi, with-
out assuming any functional form for the distribution. Since
it does not contain higher order terms further than Q4, its
applicability is limited in Q.

The second heterogeneity model that we will consider is
that introduced by Peters and Kneller26 (referred to as the PK
model from here on) which uses a gamma function to describe
the distribution of mean square position fluctuations (MSPFs).
It is mathematically written as
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Sn
inc(Q,ω ≈ 0) ≈

1(
1 +

Q2〈r2〉MSPF
3β

)β , (12)

σMSPF =
〈r2〉MSPF
√
β

, (13)

where 〈r2〉MSPF describes the mean of the individual MSPF and
σMSPF is its standard deviation. The parameter β describes the
distribution of the MSPF with a gamma function. In the case
of β → ∞, the GA is retrieved. For a constant 〈r2〉MSPF, the
heterogeneity increases with decreasing β. This model poses
no Q-limitation since it includes all higher order terms of the
cumulant expansion as long as the individual atoms can be
described by the Gaussian term alone and under the assump-
tion that heterogeneity is the only reason for the higher order
terms.

As can be seen, the standard deviations introduced for the
Yi and PK models are strongly correlated to the respective
definitions of the MSD and MSPF, and although a compar-
ison, at least qualitatively, is certainly possible, a detailed
study of the additional information they provide is beyond
the scope of this paper, where we concentrate on the MSD
itself.

The last model used in this study is that introduced by
Doster et al.2 In the same way as the PK model, it can be
used to describe the entire Q range and is based on a double-
well potential model to describe the anharmonicity of atomic
motions. In this model, each hydrogen atom can be found in
one of the two different harmonic wells, separated by a dis-
tance d and by a free energy difference ∆G. The model will be
referred to as the Do model from here on and is mathematically
expressed as

Sn
inc(Q,ω ≈ 0) ≈ exp

(
−

1
3

Q2
〈
r2

〉
Do,G

)
× (1 − 2p12(1 − sinc(Qd))), (14)

where the first term with
〈
r2

〉
Do,G

describes the Gaussian con-

tribution to the MSD and the second term describes the two
state model. p12 is the product of p1 and p2 which denote the
probability of finding an atom in the ground or excited state,
respectively, with p2/p1 ∝ exp(−∆G/RT ). The total MSD is
defined as 〈

r2
〉

Do,tot

3
= −

(
d ln[S(Q,ω = 0)]

d(Q2)

)
Q=0

=

〈
r2

〉
Do,G

3
+

p12d2

3
. (15)

In the case of only one well, p12 = 0 or d = 0 such that the
GA is retrieved.

An alternative way of comparing EINS data is through
the evaluation of the elastic neutron intensities summed over
all (or a range of) accessible Q-values Isum. In this way, a
comparison can be made without using a model. The summed
intensities are much less affected by errors, so they give a more
accurate overview over the dynamics taking place within the
time scales probed by the spectrometer. Nevertheless, in the
limit of the GA, it is possible to relate the Isum to the inverse

of the square of the MSD,

Isum
GA
=

∫ Q′min

Q′max

exp

(
−

1
3

〈
r2

〉′
Q
′2
)
dQ′ (16)

⇒
〈
r2

〉′ GA
=

1

I2
sum
· C2,

with

C =

√
3π
2

[
erf

(
Q′max

)
− erf

(
Q′min

)]
, (17)

where Q′ = Q/l and
〈
r2

〉′
=

〈
r2

〉
/l2 are the dimensionless

quantities and l is chosen as a typical length scale, i.e., 1 Å. erf
is the error function.44 In the limit of experimental precision,
the Isum is discrete and can be evaluated for each measured
temperature T through

Isum(T ) =
Qmax∑

i=Qmin

Ii(T ), (18)

〈
r2

〉
SumI

(T )
GA
∝

1

I2
sum(T )

Å
2

(19)

where Qmin and Qmax are defined by the validity of the GA or
given by the instrument.

III. METHODOLOGY

In order to compare the models to the experimental data,
the resolution broadened DSF Sinc(Q, ω ≈ 0) is normalized
by the measured DSF Sinc(Q, ω ≈ 0, T = Tlow) at the lowest
measured temperature Tlow where the mobility is assumed to
be very close to zero,

Sinc(Q,ω ≈ 0, T )
Sinc(Q,ω ≈ 0, T = Tlow)

= Snorm(Q,ω ≈ 0, T ) ≡ EI(Q, T ).

(20)
The models are applied to this normalized DSF which for
simplicity is labeled as EI(Q) from now on.

All models were implemented in Python with the help
of the LMFIT-package.45 A least-squares fitting procedure
was used taking into account the error of counting statistics
ε =
√

no of counts. This fitting method minimizes the follow-
ing formula:

χ2 =

N∑
i=1

(
ydata

i − ymodel
i

)2

ε2
i

, (21)

where N is the total number of data points, ydata
i are the

experimental data, and ymodel
i are the values obtained by the

fitting model. The reduced value of χ2
red = (χ2/no of free

parameters) can then be used to quantify the quality of the
fit.

As described in Sec. II C, all models used in the compar-
ison have different Q-limitations. The PK and Do models can
be used to fit the entire available Q-range for all instruments.
The PK model will be applied here to all instruments, whereas
the Do model is only shown for IN13 as it has the broadest Q-
range. The Yi model can also fit a broad Q-range, but in cases
of fast decay of the EISF with increasing momentum transfer
Q, the expansion of the GA to Q4 is limited as it neglects higher
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order terms. Therefore, we introduce a cutoff to the Yi model,
similar to the GA, after which the EISF at high Q-values will
not be fitted anymore. To use a consistent Q-range between the
three different hydrated A-L samples, the following procedure
is used:

First, a lowest Q-value, Qmin, is chosen to be the same
for fitting all models to a dataset from a given instrument.
Then the maximum Q-value Qmax is evaluated for the most
hydrated sample (0.8 A-L) at the highest temperature Tmax

since the decay of the EISF with increasing Q is the largest.
For the GA, Qmax is determined as the last Q-value where the
fit ln[EI(Q)] vs Q2 is still linear. The Yi model can describe
the entire available Q-range for the OSIRIS and SPHERES
instruments. However, for IN13 (up to 4.5 Å−1), the model
reaches its limit as mentioned before and a cut-off value at
Qmax,Yi = 2.5 Å−1 is introduced. It provides the best compro-
mise between including the widest range of Q-values and yet
still describing the experimental data satisfactorily for the 0.8h
sample. The Qmax evaluated for each model and each instru-
ment was then the same for all samples and temperatures. The
consequences due to the limited number of data points in the
available Q-range are elaborated in Sec. III B.

Another important point is the analysis of different Q-
ranges which is covered in Sec. III C. A summary of all
different Q-ranges evaluated with the GA, Yi, PK, and Do
model is found in Table II.

A. The question of the intercept EI(Q = 0 Å−1)

All models should start with the same value of the EI(Q)
at zero momentum transfer. As discussed in Sec. III A, the

TABLE II. Different Q-ranges used for the various models and instruments.

Q-range (Å�1)

Model GA Yi PK Do

IN13 0.5 − 1.7 0.5−2.5 0.5−4.5 0.5−4.5
1.7 − 4.5 . . . . . .

SPHERES 0.34−0.6 0.34–1.8 . . .

0.60−1.2 0.60–1.8 . . .

0.96−1.8 . . . . . .

OSIRIS 0.29-1.5 . . .

theoretical value should be 1 for the normalized DSF EI(Q).
Due to instrumental and experimental effects, like multiple
scattering or coherent effects, the starting value is often lower
than 1, especially at higher temperatures. For this reason, the
value of EI(Q = 0 Å−1) is introduced as a fitting parameter ≤1
and its consequences are evaluated here. In most publications
about EINS data, the value at EI(Q = 0 Å−1) is not clearly
defined. On the contrary, in the case of the normally used linear
fit of ln[EI(Q)] vs Q2, only the slope (∝MSD) is reported and

not the intercept with the y-axis (= ln
[
EI(Q = 0 Å

−1
)
]
). This

is surprising as will be apparent later in this paper since this
value has a strong impact on the resulting MSD value (see
Sec. III B). If the GA is used, this value is unique since a linear
fit has a global minimum and therefore has only one solution,
but in the case of more complex models, a change in the value
at EI(Q = 0 Å−1) results in a significant variation in MSD.
Furthermore, due to the limited experimental information at Q

FIG. 1. Example of the effect of EI(Q = 0 Å−1) for the SPHERES instrument. The left graphs [(a), (c), and (e)] show an example for A-L with 0.4h at 293 K,
and the right graphs [(b), (d), and (f)] show an example for dry A-L at 296 K. In graphs (a) and (b), EI(Q = 0 Å−1) is a free fit parameter. In graphs (c) and (d),
EI(Q = 0 Å−1) is fixed to the value evaluated with the GA. In graphs (e) and (f), EI(Q = 0 Å−1) is fixed to 1 for all models.
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values close to zero given by instrument geometry constraints,
and the statistical error of experimental data, it is often not
possible to get a unique solution for EI(Q = 0 Å−1). Since it is
also not possible to fix it to 1 in all cases, we fixed this value,
after several trials (see Sec. III A), to be the same for all models
and to that obtained by the GA.

To illustrate the importance of the axis intercept EI(Q
= 0 Å−1), two representative examples are shown in the fol-
lowing. Both datasets are measured on SPHERES at around
295 K. The first one is A-L at 0.4h [Figs. 1(a), 1(c), and 1(e)],
and the second one is A-L dry [Figs. 1(b), 1(d), and 1(f)]. In
order to qualify the differences between two fits on the same
dataset, they are compared in terms of the least-squares error,
evaluated by χ2

red [see Eq. (21)]. The evaluated MSPF/MSD
and χ2

red for the different cases are shown in Table III.
Figure 1(a) shows a visual under-evaluation of the EISF

EI(Q = 0 Å−1) for the PK model in comparison to the GA if
one does not constrain the fit. The gray dashed line indicates
the maximum Q-value used for the fit of the GA. The PK
and Yi models consider all available Q-values from 0.3 to 1.8
Å−1. The smallest Q-values, 0.3 and 0.46 Å−1, are not well
described by the fit of the PK model because EI(Q = 0 Å−1)
= 0.86 ± 0.03 is much smaller than the GA EI(Q = 0 Å−1)
= 0.93 ± 0.02 which fits these points well. By contrast, the
Yi model has a slightly higher value of EI(Q = 0 Å−1) = 0.95
± 0.01 than the GA, leading to a difference of almost a factor
of two in the MSPF/MSD between the PK and Yi model. If
the EI(Q = 0 Å−1) of these two models is fixed to the value
obtained by the GA [see Fig. 1(b)], the lowest two Q-values
are now well described by both models, as are the higher Q-
values. The differences in the resulting MSD and χ2

red for the
fixed and free case are shown in Table III. For the PK model,
the χ2

red, fixed = 12 for the fit where the intercept was fixed

is ≈20% larger than that of the free fit result χ2
PK, free = 10.

For the Yi model, the χ2
red, fixed = 5.1 for the fixed fit is also

≈20% larger than for the free fit χ2
red, free = 4.0. In addition,

there are big differences in χ2
red between the PK model and

the Yi model even if the fits are visually quite similar for the
fixed case [see Fig. 1(b)]. The reason for these is the very
small error bars of the counting statistics by which the χ2 is
weighted [see Eq. (21)]. The main differences are visible in
the Q-range 1.0–1.8 Å−1 where the Yi model follows the data
better [see Fig. 1(b)]. However, more important is the effect on
the evaluated MSPF of the PK model. In the free case, it is 1.3
± 0.3 Å2, while in the fixed case, it is almost a factor of 2 larger

with 2.3 ± 0.2 Å2. The changes of the MSD in the Yi model
are not as large (2.3 vs 2.2 Å2) since the value EI(Q = 0 Å−1)
only changed by a small amount. This example is shown to
illustrate that even though the least squares chi statistical value
may be better for a free fit, the small Q-values can be under-
evaluated for two reasons: (1) The statistical error is smaller
for the higher Q-values leading to a higher weight on them and
(2) the larger Q-values can be better described by the models
with a lower value at EI(Q = 0 Å−1). This under-evaluation of
the first Q-values is not only a problem for the PK model. It is
not shown here, but it happens for all models describing higher
Q-ranges.

Figure 1(c) shows what happens if the EI(Q = 0 Å−1) is
fixed to 1. Visually, the GA does not describe the first data
point well, the PK model is describing the range better, and
the Yi model is worse. The resulting MSD/MSPF values are
much larger than in the two cases before (see Table III). To
emphasis that EI(Q = 0 Å−1) = 1 is not only problematic for
hydrated samples, an example for the A-L dry sample at the
same temperature is shown in Fig. 1(f). Here the fits show
that no model is able to describe the data in the low Q-range.
By contrast, they perform well if a free and a fixed value of
EI(Q = 0 Å−1) to the GA is chosen [see Figs. 1(b) and 1(d)].
It also shows that in this case, fixing the offset is unneces-
sary since all models evaluate to the same value and that the
GA is also closer to the larger Q-values than for the case of
EI(Q = 0 Å−1) = 1.

The two examples here show the following: (1) In general,
a higher EI(Q = 0 Å−1) leads to a higher MSD and (2) the
differences between the models can be large if they are allowed
to have different values of EI(Q = 0 Å−1) and should be kept
the same for all models. (3) Fixing EI(Q = 0 Å−1) = 1 is not
always possible; therefore when comparing models, the value
EI(Q = 0 Å−1) should be fixed to the same value, which can be
the value evaluated by fitting the GA in the low Q-regime where〈
r2

〉
Q2 ≤ 1. It may be the case that many experimenters use

this method to fix the value in their publications, specifically
where the authors state that they normalized to Q = 0, but many
do not explain how they achieved that without the knowledge
of EI(Q = 0 Å−1).

B. Differences between considered Q-ranges
within the GA and the influence of statistics

A second consideration when fitting models to EINS data
to extract MSD is the definition of the Q-range to be fitted.

TABLE III. Values for χ2
red and MSPF/MSD

〈
r2

〉
for the PK and Yi model with the value of EI(Q = 0 Å�1) as a

free parameter, fixed to the value obtained by the GA and 1.

Example
A-L 0.4h 294 K A-L dry 296 K

Model EI(Q = 0 Å�1) Free Fixed to GA Fixed to 1 Free Fixed to GA Fixed to 1

PK

〈
r2

〉
[Å

2
] 1.3 ± 0.3 2.3 ± 0.2 3.6 ± 0.5 0.38 ± 0.05 0.37 ± 0.02 2.1 ± 0.4

χ2
red 10 12 17 1.1 0.98 9.7

Yi

〈
r2

〉
[Å

2
] 2.3 ± 0.1 2.2 ± 0.1 2.6 ± 0.2 0.35 ± 0.03 0.36 ± 0.02 1.1 ± 0.2

χ2
red 4.0 5.1 28 1.2 1.06 29
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FIG. 2. Effect of statistics on the value of the EI(Q = 0 Å−1) and the MSD evaluated with the GA model. For the dry A-L, an example is shown between 271
K and 283 K taken on IN13: (a) If we consider only the low Q-range (gray line), the results differ from 0.08 to 0.29 Å2 which explains the drop of the MSD at

277 K shown in Fig. 5(a). (c) Considering Q-values within the validity of the GA model up to Q2
max = 10 Å

−2
gives similar results for the MSD since the low

Q-values are less weighted. [(b) and (d)] Similar example for the 0.4h A-L between 175 K and 187 K: (b) low Q-range for GA (d) Q2
max = 10 Å

−2
(gray line).

Typically this is vague and deserves further consideration.
Many authors in publications cite the criterion defining the
upper value Qmax and some discuss arguments why it is reason-
able to surpass this limit.46 This becomes important because
even the value of EI(Q = 0 Å−1) for the GA, which will be taken
in the following as the starting value for all models, depends
on the chosen Q-range and the statistical error of each mea-
sured intensity data point. This can be best shown through data
collected on the backscattering spectrometer IN13 at the ILL.
In order to compare accurately the differences of the MSD of
similar proteins, usually the same Q-ranges are chosen for the
fit over all temperatures.

Figure 2 illustrates two problems if a limited Q-range is
chosen. First Figs. 2(a) and 2(b) show fits to the GA which

include data points up to Q2
max = 2.8 Å

−2
, evaluated as the

largest Q-range for the A-L sample from the highest temper-
ature (in total, 5 distinct Q-values with a statistical error of
around 5%–10%). This region is similar to the Q-range of
the other two spectrometers SPHERES and OSIRIS. By fit-
ting only the very first few points, where the GA is strictly
valid, large differences result in the MSD even over a tem-
perature range of just 10 K; see Figs. 2(a) and 2(b) for the dry
and 0.4h A-L, respectively. Within the statistics, the intensities

EI(Q) at a given momentum transfer are almost the same for
all temperatures, but due to the variation in absolute height
of the first 5 Q-values, the resulting MSDs can vary by a
factor of 3 (from 0.08 to 0.29 Å2) [see Fig. 2(a)] or even 5
[from 0.02 to 0.12 Å2] [see Fig. 2(b)]. On the contrary, if we
extend the Q-range and assume the validity of the GA until

Q2
max = 10 Å

−2
at all temperatures, a region that still rea-

sonably corresponds to a linear fit region and is just slightly
larger than the theoretically proposed limit

〈
r2

〉
GA

Q2
max ≤ 1,

then the resulting MSD is almost the same for all models
within error bars: Fig. 2(c), 0.15–0.17 Å2, and Fig. 2(d), 0.09–
0.11 Å2. A summary of the obtained

〈
r2

〉
and χred is shown in

Table IV.
This example shows two important aspects of using the

largest available Q-range: (1) A larger Q-range results in more
precise and consistent results since we can include more data
points and (2) it also leads, in general, to different EI(Q = 0
Å−1) and MSD values, even when both should give the same
result since they are still in the limit of the GA. Therefore, it
is important to include the highest possible Q-range to be as
precise as possible, but also to stick with the same Q ranges to
compare data accurately.

TABLE IV. Values for χ2
red and MSD

〈
r2

〉
for the GA model with Q2

max = 2.8 Å
−2

and Q2
max = 10 Å

−2
.

Example
A-L dry A-L 0.4h

Q2
max[ Å

−2
] T (K) 271 277 283 175 181 187

2.8

〈
r2

〉
[Å

2
] 0.21 ± 0.04 0.08 ± 0.03 0.29 ± 0.06 0.02 ± 0.04 0.12 ± 0.04 0.04 ± 0.04

χ2
red 0.38 0.21 0.92 0.30 1.3 0.24

10

〈
r2

〉
[Å

2
] 0.16 ± 0.02 0.15 ± 0.01 0.17 ± 0.02 0.09 ± 0.02 0.11 ± 0.01 0.10 ± 0.02

χ2
red 0.98 0.48 1.1 0.75 0.96 0.75



234908-9 Zeller et al. J. Chem. Phys. 149, 234908 (2018)

C. Two regimes—high Q-range

As already mentioned, the GA model is strictly valid for

Q→ 0Å
−1

, but some experimental and instrumental issues
arise specifically at low Q values. We can have multiple scat-
tering47 or non-negligible coherent contributions which result
in EI(0) < 1, detectors of different resolutions for low momen-
tum transfers as is the case for SPHERES48 and the very
similar instruments IN16B and HFBS. By contrast, IN13 and
OSIRIS do not suffer from detector resolution effects. But
in general, the counting statistics are also worse at lower
Q-values.

To illustrate this, an example for each instrument and
hydration between 305 and 310 K is shown in Fig. 3 as plots
of ln [EI(Q)] vs Q2. As can be seen, the data appear to have
different linear regimes. For IN13 and SPHERES, a second
linear regime at high Q is clearly visible, whereas OSIRIS
shows only one. The reason is the different dynamical pro-
cesses which are visible at different time scales (see Sec. II B).
On SPHERES, we also note that the first two Q-values used
at 0.34 and 0.45 Å−1 are clearly higher for the hydrated sam-
ples, which is probably due to a slightly reduced resolution of
these two detectors.48 Therefore, two different low Q regimes
are fitted for SPHERES, the first three detectors, including
the two Q detectors with lower resolution (0.34–0.60 Å−1)
and then the next four detectors after these two detectors
(0.60–1.2 Å−1). To factor out effects at low Q and to eval-
uate the information that can be obtained in the second linear
regime, the GA is also fitted to high Q values, even though it
strictly falls out of Q2

〈
r2

〉
GA
� 1. A similar approach was

taken in previous publications of IN13 data (e.g., in Ref. 49
or Ref. 50). Figure 3 illustrates using dashed lines all the dif-
ferent linear regimes fitted in this paper (for Q-ranges, see
Table II).

In addition to the second linear regime at high Q-values,
the ordering between the different instruments, and therefore

resolution, can be clearly observed; the break between regions
of linearity is moving to smaller momentum transfers with
increasing resolution.

IV. RESULTS AND DISCUSSION

In the following, we discuss the validity of the aforemen-
tioned models in more detail comparing to datasets from the
three spectrometers IN13, SPHERES, and OSIRIS, in turn. In
addition, we show and discuss the summed intensities versus
MSPF for the three instruments and hydration levels.

A. The instrument IN13

The Q-ranges used for IN13 data evaluation are given
in Table II. Representative fits are shown at three different
temperatures for the A-L at 0.4h and 0.8h in Figs. 4(a) and
4(b), respectively. All models describe the data points well
within their specific Q-ranges. At high temperatures for the
0.8h sample, the Yi model follows the general behavior of the
experimental data but does not fit as well as the other models.
For these data, a lower QYi

max would be needed to obtain bet-
ter agreement. However, a smaller Q-range would not include
much more Q information than that already considered using
the GA model. For reasons already explained since we want
to compare all samples within the same Q-range, we stick to

QYi
max = 2.5 Å

−1
which is the best compromise between includ-

ing the largest Q-values possible and a good description of the
data with a given model.

The MSD results of the fits to the elastic, normalized DSF
EI(Q) are shown in Fig. 5. Figure 5(a) shows the difference
between the GA, PK, and Yi model for the dry protein. The
differences between the models are very small, and all mod-
els show a similar behavior. The same plot is shown for 0.4
hydration in Fig. 5(b). Here, the differences between the mod-
els are also small, but overall, the PK and Yi models give

FIG. 3. Normalized raw data ln[EI(Q)] vs Q2 for the three different hydration levels [(a)–(c)] and the three different instruments, OSIRIS (blue), IN13 (red),
and SPHERES (green). The dashed lines indicate linear fits to the data in their respective range. For OSIRIS, at all hydration levels, mainly one linear regime
is visible. For IN13, clearly two regimes are visible, separated around 3 Å−2. For SPHERES, two low Q regions and one high Q region can be identified. (d)
shows the entire Q-range of IN13 and the linearity of the second regime up to 20 Å−2.
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FIG. 4. Representative fits for the three models at three different temperatures for IN13 data. (a) corresponds to 0.4h and (b) corresponds to 0.8h. The vertical
gray lines indicate the Qmax used for each model: 0.5–1.7 Å−1 for GA and 0.5–2.5 Å−1 for Yi.

FIG. 5. MSD values extracted from the GA, PK, Yi, and Do models for dry, 0.4, and 0.8 hydrated A-L depleted samples [(a)–(c)]; IN13 data. (d) shows the
MSD of all three hydration levels evaluated with the GA model.

rise to slightly higher MSPF/MSD values due to the inclu-
sion of higher Q values. At 0.8 hydration [see Fig. 5(c)], the
MSPF/MSD values are clearly higher at high temperatures for
both models. Both hydrated samples show an increase in the
MSD at around 230 K compared to the dry protein as expected
at the dynamical transition temperature,2 commonly observed
in hydrated proteins. For the 0.8h sample, around 270–280 K, a
very steep increase in the MSD is visible that can be attributed
to the melting point of heavy water at 278 K. Probably for 0.8
hydration, some free water exists that can freeze and therefore
inhibit the motion of the protein. Therefore, the MSD shows
an abrupt rise at the melting point. After 280 K, the increase
in the MSD for all models is similar to the 0.4h sample, but
the absolute values are higher. The MSD for the 0.8h sample
is higher than for the 0.4h sample since the higher hydration
decreases the crowding in the sample and thus allows more
motions. For both hydrated samples, the error bars of the GA
are smaller than for the other models. This gives the illusion
of a higher accuracy, which is only due to the cut-off effect
and to the exclusion of certain amplitudes. In the case of the
Yi model at 270–320 K, very large errors are evaluated since
the fit is not describing the data as well as for the other cases
[e.g., see Fig. 4(b) at 307 K]. This can be confirmed by the
higher χ2

red shown in Fig. 6.

Finally, we compare the performance of the models that
include heterogeneity to the double well potential model of
Doster et al. that takes into account anharmonicity. Since IN13
has by far the largest available Q-range, the Doster model is
only evaluated on this instrument to show that it also gives good
results. Figures 5(a)–5(c) show the results of 〈r2〉Do,tot defined

FIG. 6. Reduced χ2
red for the fits, averaged over all temperatures. It is impor-

tant to note that the reduced χ2
red values are calculated with the respective

Q-values used for the fit. Therefore, the GA and Yi models take less values
into account. All four models have a χ2

red value around 1, but the value for
the Yi model at 0.8 hydration is around 2 and has a much bigger standard
deviation. The reason for this was already mentioned in the results of the eval-
uated MSD. The fit of the Yi model is indeed worse at high temperatures and
therefore also its χ2

red.
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in Eq. (15). They compare rather well with the results from
the other three models. The evaluated values for the enthalpy
∆G = 6.1 kJ mol−1 and d = 1.7 Å (0.4h) are similar to values
found for myoglobin at 0.38h (∆G = 12 kJ mol−1, d = 1.5 Å).2

In Fig. 6, the reduced χ2
red for the different fits averaged over

the entire temperature range are shown.
Overall the results on IN13 lead to the conclusion that for

the dry A-L, all models are equal since the system is still close
to a harmonic system (no dynamical transition visible) and the
heterogeneity does not influence the evaluated MSD. When
the hydration increases, the anharmonicity grows and quanti-
tative differences can be seen between the models. Especially
at 0.8 hydration, the three models diverge at high temperatures,
showing the influence of the heterogeneity to the MSD. The
quality of the fits is similar for all three models in their respec-
tive Q-range. Only in the case of the Yi model, it is worse at
high temperatures for the A-L at 0.8h.

1. IN13—only high Q-range

Taking advantage of the fact that IN13 covers a wide Q-
range, we follow on from the discussion in Sec. III C to now
consider fitting the high Q-range alone using the GA model,
to evaluate the effect on the dynamical transition temperature
and the MSD. Specifically, we fit the Q-range 1.7–4.5 Å−1.
The result is shown in Fig. 7 and can be compared to the
GA at low Q-values in Fig. 5(d). The absolute value of the
MSD from the high Q-range is lower by up to a factor of
5 for the 0.8h sample. This is a huge effect, but might be
reasonable when separating motions of large and small ampli-
tudes, for instance, atoms of the side chains of the amino
acids and fluctuations within the backbone of the amino acids.
The relative change in the MSD with increasing tempera-
ture between the different hydrations is however similar. All
hydrations follow the same trend until 220 K and then devi-
ate from each other. In the high Q-range, the 0.4h and 0.8h
curves are then superposed until the second splitting due to
the melting of heavy water, whereas for the small Q-range, the
MSD of the higher hydrated sample lies even below the 0.4h
sample.

In the paper of Combet and Zanotti,51 the authors study
a protonated protein hydrated in D2O and the same protein
in a per-deuterated form hydrated in H2O on two different
instruments, IN13 and the spectrometer MIBEMOL with a res-
olution of ≈140 µeV. The corresponding short time window
of ≈10 ps s reveals a weak dynamical transition, observed for
both the protein and its hydration water. By contrast, the larger

FIG. 7. MSD for all three hydrations evaluated with the GA model at a high
Q range (1.7–4.5 Å−1); IN13 data.

time window of IN13 permits a separation of the experimental
data into large and local motions with a crossover at around
1.2 Å−1; clear differences in the motions of water and protein
molecules are being visible since larger amplitude motions
can be probed at low Q. Their approach of using H/D-contrast
allows direct evidence of two populations of motion. Our find-
ings without contrast variation confirm that a division in two
population is indeed reasonable.

Another approach in this same line of thought involves fit-
ting the whole Q-range using a bimodal fitting model, where
EI(Q) ≈ p1 exp(−〈r2〉largeQ2) + p2 exp(−〈r2〉localQ2), with
p1 + p2 = 1. It assumes the presence of two well-separated
MSDs defined within the GA 〈r2〉large > 〈r2〉local in the sam-
ple, as proposed by Nakagawa et al.24 This approach works
well for the protein staphylococcal nuclease with an instru-

mental resolution of 1 m eV, obtaining 〈r2〉large ≈ 0.7 Å
2

and

〈r2〉local ≈ 0.15 Å
2

at 300 K.
In conclusion, our results suggest that by analyzing the

high Q range only on an instrument like IN13, one can access
local motions in the proteins, which give rise to small ampli-
tudes of motion, but which follow quite closely the temperature
and hydration behavior of the large amplitudes in the case of
hydrated powders.

B. The instrument SPHERES

For the SPHERES spectrometer, the used Q-range is
0.34–1.8 Å−1. The first two detectors at Q = 0.34 and
Q = 0.45 Å−1 have a lower energy resolution.48 To see the
influence of this resolution effect, two different low Q-ranges
were fitted in which the GA is still valid, i.e., ln[EI(Q)] vs
Q2 linear for all temperatures. The first low Q-range only
includes the first three available Q-values 0.34–0.6 Å−1 (see
Sec. IV B 1), whereas the second low Q-range excludes the
first two Q-values with lower resolution, corresponding to a
Q-range of 0.6–1.2 Å−1 (see Sec. IV B 2). In both cases, the PK
and Yi models are fitted to the same Q-values as the respective
fit of the GA and using in addition the larger available Q-values
until 1.8 Å−1. A third Q region is fitted to only high Q-values,
as described in Sec. III C. There only the GA was used in the
Q-range 0.95–1.8 Å−1, neglecting the first four Q-values.

1. Low Q-range (GA, 0.34–0.6 Å−1)

In Figs. 8(a) and 8(b), representative fits for three different
temperatures are shown for the 0.4h and 0.8h A-L samples. The
fits show that it is not possible to include more Q-values for
the GA if the small Q-values should still be well described
by the fit. A comparison to a larger Q-range which does not
describe the lowest two Q-values is shown in Sec. IV B 2. The
SPHERES spectrometer has ten times better resolution than
IN13 such that larger motions are included and the resulting
MSD becomes larger, leading to a lower Q-range accessible
by the GA. These larger motions are possibly the movements
of the side chains of A-L. Also small differences are visible
between the samples in comparison to IN13.

The results of the fits of the EI(Q) are shown in Fig. 9 in
the same way as for IN13. For all samples, a linear increase
of the MSD/MSPF is visible until 200 K where the dynamical
transition sets in.
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FIG. 8. Representative fits for the three models at three different temperatures for SPHERES data. (a) corresponds to 0.4h, and (b) corresponds to 0.8h. The
vertical gray line indicates Qmax = 0.6 Å−1 used for the GA.

For the dry sample, the evaluated MSD is very noisy which
can be explained by the low statistics implied in using only the
first three Q-values. Higher Q-values could be included, but
in order to compare the same Q-ranges between the different
hydrations, we stick to the Q-range evaluated for the highest
hydration (for a larger Q-range, see Sec. IV B 2). The problem
with using the first three data points only is emphasized by the
small decay of the EI(Q) for the dry sample. The Yi and PK
models fit the data well and with a similar goodness, result-
ing in similar values of MSD/MSPF, and with a much better
accuracy than the GA since they are including all experimental
data points.

At 0.4 hydration, the dynamical transition is visible
around 200 K. The MSPFs/MSDs of the PK and Yi model
are higher than the MSDs of the GA model following the
trends seen on IN13. At 0.8 hydration, two changes in the
slope are visible at ∼200 K and ∼270 K. The first change of
the slope is again attributed to the dynamical transition and
the second is attributed to the melting of free heavy water
which enhances the movements of the protein. The highest
MSD/MSPF values are around 3.5 Å2. The PK model has the
same MSPF as the MSD of the GA, whereas the Yi model
has higher MSD at temperatures above 270 K. This coincides
again with the melting point of D2O. The MSD from 270

to 280 K increases in the Yi model by almost 1.5 Å2. This
transition is smoother for the two other models. On the other
hand, after the jump, the increase of the MSD in the Yi model
is much slower in comparison to the other models. Therefore,
at 310 K, the 3 models reach a similar value in MSD/MSPF.
The jump of the Yi model can be explained by the counter-
balancing between the Q2 and Q4 term [see Eq (11)], which
results likely into a mathematical, but not a physical solution.
Also the reduced χ2

red statistics indicate that the fitting of the
PK and Yi model for 0.8 hydrated samples is much worse than
for the dry and 0.4 hydration samples (data not shown).

2. Low Q-range (GA, 0.6–1.2 Å−1)

In Sec. IV B 1, the GA was only fitted to the first three Q-
values (0.35–0.6 Å−1) to take into account the limit of validity
given in Eq. (10). This leads to a good description of the data in
the low Q-range, but also to a high statistical error. In addition,
as stated before, the resolution is larger for the first two low
Q detectors in comparison to the other detectors. If the GA is
fitted in the range of 0.6–1.2 Å−1, it leads to a more consistent
linear fit with a smaller error. Examples for the fits are shown
in Figs. 10(a) and 10(b) as before. The resulting MSDs are
shown in Fig. 11, together with the Yi and PK models using
the Q-range 0.34–1.8 Å−1.

FIG. 9. MSD values extracted from the GA, PK, and Yi models for dry, 0.4 and 0.8 hydrated A-L depleted samples [(a)–(c)]; SPHERES data. (d) shows the
MSD of all three hydration levels evaluated with the GA model. For the GA, only the first three Q-values (0.34–0.6 Å−1) were used as shown in Fig. 8.
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FIG. 10. Representative fits for the three models at three different temperatures for SPHERES data. (a) corresponds to 0.4h, and (b) corresponds to 0.8h. The
vertical gray line indicates Qmax = 1.2 Å−1 used for the GA. Here, the lowest two Q-values are neglected in contrast to Fig. 8.

Figures 11(a)–11(c) summarize the three different hydra-
tions of A-L, as shown before. For all three hydrations, the GA,
PK, and Yi models evaluate to similar MSPF/MSD values. The
values of the MSD for the dry protein are very similar between
the two different Q-ranges of the GA. For the 0.4h and 0.8h
samples, the MSD is lower by a factor of ≈2 compared to fits
including the lowest Q-value. Figure 11(d) shows the results
of the GA for all three hydrations. A clear difference in the
increase of the MSD is visible between the dry and the two
hydrated samples at around 220 K. The two hydrated samples
are then following the same pattern until around 270 K. At
higher temperatures, the 0.8h sample has a much larger MSD
than the 0.4h sample. As explained before, the reason is the
melting of frozen D2O. Nevertheless, it is interesting that both
curves have the same MSD until 270 K which could be due to
the non-frozen water shell around the protein being the same
in both hydrations.

The comparison between the two different Q-ranges at
low Q for the GA [see Figs. 9(a)–9(d) and 11(a)–11(d)] shows
that the quantitative value of the MSD is different depending
on which range is chosen. The difference of a factor of 2 in the
MSD for hydrated samples originates mainly in the difference
of the value of the EI(Q = 0 Å−1). This is especially visible in
the cases of the PK and Yi models. They both use the entire

available Q-range at high Q, but fixing EI(Q = 0 Å−1) to the
respective value obtained by the GA changes their quantitative
results dramatically.

3. High Q-range for GA: 0.96–1.8 Å−1

As shown in Sec. III C, it is possible to describe only
the high Q range of SPHERES using the GA. The fitted Q-
range in which ln[EI(Q)] vs Q2 is linear is 0.96–1.8 Å−1. The
resulting MSDs are shown in Fig. 12. Comparing to the low Q
fits without the small angle detectors [Fig. 11(d)], the MSDs
are smaller but only up to a factor of 2 in the case of the
0.4h sample. More interesting are the changes in the behavior
between the different samples. First, it appears that the dry
powder shows a slightly larger MSD in the temperature range
150–240 K compared to the hydrated samples which have the
same MSD in this temperature range. Such an observation has
been reported by Nickels et al.52 for green fluorescent protein
(GFP) [0.4 D2O hydration vs. dry, Fig. 2(a) in their publi-
cation], which was measured on the very similar instrument,
HFBS. They suggest that the frozen hydration shell reduces the
MSD at low T by suppressing fast ps fluctuations. A similar
behavior was also found in molecular dynamics simulations
of GFP by Hong et al.53 Second, the MSD of the 0.8h sample
is the same as that for the dry sample between 240 and 270 K

FIG. 11. MSD values extracted from the GA, PK, and Yi models for dry, 0.4, and 0.8 hydrated A-L depleted samples [(a)–(c)]; SPHERES data. (d) shows the
MSDs of all three hydration levels evaluated with the GA model. For the GA, the Q-range 0.6–1.2 Å−1 is evaluated, and for the PK and Yi models, the Q-range
is 0.6–1.8 Å−1.
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FIG. 12. MSD for all three hydrations evaluated with the GA model at a high
Q range (0.96–1.8 Å−1); SPHERES data. The inset shows a zoomed in view
of the low T region.

and lower than for the 0.4h sample. It seems that the MSD is
inhibited by the frozen D2O for the 0.8h sample. Above 270 K,
the MSD of the 0.8h sample increases steeply. This again coin-
cides with the melting point of heavy water at 278 K. Finally,
in the inset of Fig. 12, one can see that the dynamical transition
still takes place around 200 K, but since the dry sample has a
higher MSD at lower T, the crossing between the hydrated and
dry sample takes place at 250 K.

C. The instrument OSIRIS

For the OSIRIS spectrometer, the chosen Q-range is 0.29–
1.5 Å−1. Note that OSIRIS has more detectors that cover this

Q-range as compared to the other two spectrometers, allowing
for better Q-resolution. The instrumental time resolution is
three times larger than on IN13 such that faster motions up
to around 25 ps can be probed. This may explain why it is
possible to use all three models until 1.5 Å−1. Mainly small
localized movements are observed and not larger side-chain
motions. The resulting MSDs are thus small in comparison to
IN13 and SPHERES. Representative fits of the EI(Q) for the
two hydrated samples are shown in Fig. 13.

The MSDs/MSPFs for the different models are illustrated
in the same way as for IN13 and SPHERES in Fig. 14. For
each hydration, the GA, PK, and Yi models yield almost the
same MSD/MSPF values. At 310 K, the PK and Yi mod-
els evaluate slightly higher MSPF/MSD values for the dry
and 0.4 hydration samples and for the 0.8 hydration sample
above 280 K. This behavior confirms that all models give sim-
ilar results if they use the same Q-range on this instrument.
The dry sample shows a linear increase of the MSD/MSPF
with increasing temperature. For the 0.4 and 0.8 hydra-
tion, the dynamical transition is visible and starts at around
250 K.

D. Comparison between summed intensities and MSPF

We would like to note that the MSDs/MSPFs are not
always the best way to look at data when small differences
are expected between similar samples. In such cases, the

FIG. 13. Representative fits for the three models at three different temperatures for OSIRIS data. (a) corresponds to 0.4h, and (b) corresponds to 0.8h.

FIG. 14. MSD values extracted from the GA, PK, and Yi models for dry, 0.4, and 0.8 hydrated A-L depleted samples [(a)–(c)]; OSIRIS data. d) shows the MSD
of all three hydration levels evaluated with the GA model. All models use the same Q-values (0.29–1.5 Å−1).
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FIG. 15. [(a)–(c)] Summed intensities over the entire available Q-range of each instrument. [(d)–(f)] Respective evaluated MSPF within the PK model over the
same Q-range.

comparison of the intensities summed over all (or a range of)
available scattering angles, Isum, can be much more insight-
ful. In the limit of the GA, they can moreover be related to
the MSD [see Eq. (19)]. We show here the Isum for the three
different instruments and hydration levels in Fig. 15 and com-
pare them to the MSPF evaluated by the PK model using the
same Q-range. The results demonstrate the inverse hierarchy
for the Isum and the MSPF between the samples. As the error
bars of the summed intensities are much smaller, it allows
us to better separate the curves. The differences between the
hydration levels become more visible in the summed inten-
sities. For instance, the kink for the 0.8h sample at ≈275 K
clearly indicates the melting of the ice. Moreover, one distin-
guishes on IN13 that in the case of Isum [see Fig. 15(b)], the
curve corresponding to the dry sample lies below the curves
of the hydrated samples in the temperature domain from 150
to 210 K. We discussed this effect earlier in Sec. IV B 3. This
behavior cannot be observed in the MSPF [see Fig. 15(e)]
where this information is lost due to data fitting. However, for
the MSPF evaluated on SPHERES, a small bump at 180 K
can be seen for the hydrated A-L samples [see Fig. 15(f)],
which is not visible in the Isum [see Fig. 15(c)] and which
shows up also when applying the GA [see Fig. 11(d)]. It
might be a real effect, eventually due to an ice phase transi-
tion,54 which appears only through the evaluation of the slopes.
Both data analyses might therefore furnish complementary
information.

V. SUMMARY AND CONCLUSION

We have evaluated a number of models and the resulting
MSD/MSPF of A-L for different instruments and hydration

levels, and we used various Q-ranges for data analysis. We
show that the intercept of EI(Q = 0 Å−1) is very important in
fitting the data to any given model. Fixing it to the theoretical
value of EI(Q = 0 Å−1) = 1 is often not possible for the GA, as
shown in Sec. III A, nor for the models that take into account a
larger Q-range. Since all models should converge in the limit of
Q→ 0 to the same value, but can present significant variations
when leaving it as a free parameter, we advise to fix EI(Q = 0
Å−1) to a common value for the same dataset. In our case, this
value was obtained by the fit of the GA. With such settings, the
qualitative results between the models are similar, concerning
the dynamical transition and dynamical changes as a function
of the hydration level, which leads to the conclusion that the
most basic and mainly used model, the GA, is indeed a good
standard, if a consistent protocol is followed, i.e., respecting
a linear behavior of ln[EI(Q)] vs Q2 and comparing the same
Q-ranges.

The inclusion of the smallest Q-values in tradi-
tional reactor-based neutron backscattering spectrometers can
change the quantitative MSD dramatically as shown on
SPHERES, i.e., resulting in a difference by a factor of two for
the MSD. As stated before, the first detectors on SPHERES
have a lower resolution than the other detectors, but this is
unlikely the only reason for the large differences in MSD. As
the temporal range of SPHERES allows us to probe larger
amplitudes of motion, it could also arise from the onset of
movements of molecular subgroups. Furthermore, if the same
Q-range is respected when comparing hydration levels or dif-
ferent samples, the GA is an adequate model and the inclu-
sion of non-Gaussian terms is not needed in order to have a
good estimation on the dynamics. By contrast, we show that
for a quantitatively accurate analysis, the MSD can be quite
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different between models, especially at a higher hydration
level. In fact, even the PK and Yi models do not provide
much higher precision, mainly because they are too depen-
dent on the value of EI(Q = 0 Å−1). If the experimenter
is expecting small differences in dynamics between sam-
ples, then the extended models could give more accurate
values for the MSD since they include information over a
larger Q-range. However, the data will be subject to larger
errors than the GA since they also have more free parame-
ters to fit, as can be seen from the MSD/MSPF on OSIRIS
(see Sec. IV C). The comparison of the summed intensities
Isum may be more helpful to determine small differences,
and they can deviate from the behavior of the MSPF/MSD
even when both use the same raw data and Q-ranges (see
Sec. IV D).

As EINS is often applied to a class of samples, which
have only minor differences (enzymes in the presence or
not of an inhibitor,55 a wild-type biomolecule against a
mutant,56 proteins at different concentrations,57 with various
co-solutes,58 etc.), the comparison of such a dataset requires
highest consistency concerning:

• use of the same hydration level,
• use of the same instrumental resolutions,
• use of the same Q-values for extraction of MSD/MSPF

or summed intensities,
• set EI(Q = 0 Å−1) to the same value if comparing

different models for the same dataset.

In conclusion, our investigation evidences that, despite
many efforts to improve the quantitative results for the MSD,
significant questions remain and we were not able to establish
a reliable method on how to treat the data to get results with
highest precision. However, we were able to show that a pre-
vailing although often ignored point is the correct treatment of
the point at EI(Q = 0 Å−1). Interestingly, our study suggests
that in some cases, a bi-modal approach might be sufficient and
helpful to distinguish smaller and larger motions as already
suggested by, e.g., Nakagawa et al.,24 Doster and Settles,59

or Combet and Zanotti51 in the past. On the one hand, such
treatment could help to distinguish large motions, which are
sometimes associated with movements of hydration water if
H2O is used or with local translational diffusive displacements,
whereas smaller motions account for localized dynamics or
vibrations within the biomolecules. Doster very recently also
showed that a bi-modal treatment of data taken on myoglobin
clearly permits to identify at least two molecular processes
which might be sufficient to describe the neutron scattering
spectra of proteins.29 On the other hand, as discussed in the
present work, if a clear separation of linear regimes is no longer
appropriate, the models using a continuous distribution of indi-
vidual MSD describe the dynamics very well without further
assumptions. For a reliable conclusion, the exact knowledge
of EI(Q = 0 Å−1) is of utmost importance, but most instru-
ments do not permit a direct measurement of this value. We
suggest further studies by either spin-echo spectroscopy giv-
ing access to Q-values as small as 10−2 Å−1 (IN1560 at the
ILL) or polarisation analysis in combination with neutron tech-
niques (diffraction and/or spectroscopy61,62) to separate the
coherent and incoherent scattering signals. When addressing

motions at low Q’s, it is important to note that multiple scat-
tering becomes increasingly important and has to be corrected
carefully.29 This approach would also help us to determine the
exact reasons for a deviation from EI(Q = 0 Å−1) = 1 and how
it can be estimated. In addition, it may enable more quantita-
tive precision in determining the values of MSD/MSPF in the
future.
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