001     859030
005     20220614190002.0
024 7 _ |a 10.1111/nph.15646
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a pmid:30565261
|2 pmid
024 7 _ |a WOS:000465446300035
|2 WOS
024 7 _ |a altmetric:53184281
|2 altmetric
024 7 _ |a 2128/31317
|2 Handle
037 _ _ |a FZJ-2018-07847
082 _ _ |a 580
100 1 _ |a Dreyer, Ingo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view
260 _ _ |a Oxford [u.a.]
|c 2019
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655205907_17363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To obtain insights into the dynamics of nutrient exchange in arbuscular mycorrhizal (AM) symbiosis, we modelled mathematically the two‐membrane system at the plant–fungus interface and simulated its dynamics. In computational cell biology experiments, the full range of nutrient transport pathways was tested for their ability to exchange phosphorus (P)/carbon (C)/nitrogen (N) sources. As a result, we obtained a thermodynamically justified, independent and comprehensive model of the dynamics of the nutrient exchange at the plant–fungus contact zone. The predicted optimal transporter network coincides with the transporter set independently confirmed in wet‐laboratory experiments previously, indicating that all essential transporter types have been discovered. The thermodynamic analyses suggest that phosphate is released from the fungus via proton‐coupled phosphate transporters rather than anion channels. Optimal transport pathways, such as cation channels or proton‐coupled symporters, shuttle nutrients together with a positive charge across the membranes. Only in exceptional cases does electroneutral transport via diffusion facilitators appear to be plausible. The thermodynamic models presented here can be generalized and adapted to other forms of mycorrhiza and open the door for future studies combining wet‐laboratory experiments with computational simulations to obtain a deeper understanding of the investigated phenomena.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Spitz, Olivia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kanonenberg, Kerstin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Montag, Karolin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Handrich, Maria
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ahmad, Sabahuddin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schott-Verdugo, Stephan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Navarro-Retamal, Carlos
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rubio-Meléndez, María E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gomez-Porras, Judith L.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Riedelsberger, Janin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Molina-Montenegro, Marco A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Succurro, Antonella
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zuccaro, Alga
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gould, Sven B.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bauer, Petra
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Schmitt, Lutz
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 17
|u fzj
773 _ _ |a 10.1111/nph.15646
|0 PERI:(DE-600)1472194-6
|n 2
|p 1043-1053
|t The new phytologist
|v 222
|y 2019
|x 0028-646X
856 4 _ |u https://juser.fz-juelich.de/record/859030/files/Dreyer_et_al-2019-New_Phytologist.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:859030
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21