000859032 001__ 859032 000859032 005__ 20210130000147.0 000859032 0247_ $$2doi$$a10.1093/database/bay124 000859032 0247_ $$2Handle$$a2128/22389 000859032 0247_ $$2pmid$$apmid:30576483 000859032 0247_ $$2WOS$$aWOS:000453806800003 000859032 0247_ $$2altmetric$$aaltmetric:59783030 000859032 037__ $$aFZJ-2019-00002 000859032 082__ $$a570 000859032 1001_ $$0P:(DE-HGF)0$$aPallast, N.$$b0 000859032 245__ $$aCloud-based relational database for multimodal animal data 000859032 260__ $$aOxford$$bOxford University Press$$c2018 000859032 3367_ $$2DRIVER$$aarticle 000859032 3367_ $$2DataCite$$aOutput Types/Journal article 000859032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561624214_25932 000859032 3367_ $$2BibTeX$$aARTICLE 000859032 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000859032 3367_ $$00$$2EndNote$$aJournal Article 000859032 520__ $$aPre-clinical research builds on a large variety of in vivo and ex vivo tools such as non-invasive imaging, microscopy, and analysis of gene expression. To work efficiently with multimodal data and correlate results across scales, it is of particular importance to have easy access to all data points from different specimen, e.g. the magnetic resonance imaging (MRI) data from different time points, and the post-mortem histology. That requires an efficient data management, which is customizable and designed to relate all applied methods, raw data and analyses to one specific animal. Despite increasing demands to handle such complex data, most pre-clinical labs have not yet established such an electronic database. Here, we present a novel cloud-based relational database for multimodal animal data, which operates on commercial software. We have implemented data fields for various pre-clinical features such as MRI, histology and behaviour. Automated procedures replace manual and recurrent calculations. Pre-set plotting and printing features provide efficient analysis and documentation. The database template is useful for all labs working with laboratory animals and the adaption to specific research projects requires no prior scripting expertise. The database works operating-system independent through the web browser and allows multiple users to work simultaneously. The data entry is monitored and restricted for particular tests according to the user management in order to keep for example users during the experiment blinded for the experimental group. The database improves data accessibility, standardization of data recording and data handling efficiency in pre-clinical research. 000859032 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0 000859032 588__ $$aDataset connected to CrossRef 000859032 7001_ $$0P:(DE-HGF)0$$aWieters, F.$$b1 000859032 7001_ $$0P:(DE-HGF)0$$aNill, M.$$b2 000859032 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b3 000859032 7001_ $$0P:(DE-HGF)0$$aAswendt, M.$$b4$$eCorresponding author 000859032 773__ $$0PERI:(DE-600)2496706-3$$a10.1093/database/bay124$$pbay124$$tDatabase$$v2018$$x1758-0463$$y2018 000859032 8564_ $$uhttps://juser.fz-juelich.de/record/859032/files/bay124.pdf$$yOpenAccess 000859032 8564_ $$uhttps://juser.fz-juelich.de/record/859032/files/bay124.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000859032 909CO $$ooai:juser.fz-juelich.de:859032$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000859032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ 000859032 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000859032 9141_ $$y2019 000859032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000859032 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000859032 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000859032 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000859032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDATABASE-OXFORD : 2017 000859032 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000859032 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000859032 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000859032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000859032 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000859032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000859032 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000859032 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000859032 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000859032 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000859032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000859032 920__ $$lyes 000859032 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000859032 980__ $$ajournal 000859032 980__ $$aVDB 000859032 980__ $$aUNRESTRICTED 000859032 980__ $$aI:(DE-Juel1)INM-3-20090406 000859032 9801_ $$aFullTexts