001     859035
005     20240619083550.0
024 7 _ |a 10.1103/PhysRevE.98.062615
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/21056
|2 Handle
024 7 _ |a WOS:000454428800014
|2 WOS
037 _ _ |a FZJ-2019-00005
082 _ _ |a 530
100 1 _ |a Sehnem, André Luiz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Diffusiophoresis as ruling effect: Influence of organic salts on thermodiffusion of iron oxide nanoparticles
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2018-12-26
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2018-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1546497572_30506
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Colloidal particles, including ferrofluidic nanoparticles (NP), move in a temperature gradient due to thermodiffusion. Organic salts, which are often added to disperse the NP in aqueous solution, also move in the temperature gradient. This can have a strong influence on the behaviour of the NP, which not only respond to the temperature gradient, but also to the concentration gradient of the dispersive salt, an effect termed diffusiophoresis. In this work we present experimental results on thermodiffusion of iron oxide nanoparticlesdispersed in aqueous solutions of organic hydroxides, which illustrate %the possibility of expressive changes in thermodiffusion of nanoparticles. the possibility to manipulate the thermodiffusion of NP through the addition of organic salts. Our experiments investigate the temperature dependence of the particles' Soret coefficient, a recurring question on thermodiffusion of water dispersed particles. Existing theoretical approaches are compared and we relate the Soret coefficient of the NP with two main physical parameters ruling particle motion: the NP's electrostatic potential and the Soret coefficient of the dispersing ions. These parameters are also experimentally determined. At the order of magnitude of the NP's Soret coefficient good agreement between experiments and theory is achieved by including the experimental data on the Soret coefficient of the dispersing ions and therefore the NP's displacement due to the ion concentration gradient. Taking into account the temperature dependence of such previously unknown parameters is a relevant step to describe the temperature dependence of the NP's Soret coefficient.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
542 _ _ |i 2018-12-26
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Neto, Antônio Martins Figueiredo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 2
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 3
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physreve.98.062615
|b American Physical Society (APS)
|d 2018-12-26
|n 6
|p 062615
|3 journal-article
|2 Crossref
|t Physical Review E
|v 98
|y 2018
|x 2470-0045
773 _ _ |a 10.1103/PhysRevE.98.062615
|g Vol. 98, no. 6, p. 062615
|0 PERI:(DE-600)2844562-4
|n 6
|p 062615
|t Physical review / E
|v 98
|y 2018
|x 2470-0045
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859035/files/PhysRevE.98.062615.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859035/files/article%20main%20text%20final.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859035/files/supplementary-final.tex
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859035/files/article%20main%20text%20final.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859035/files/PhysRevE.98.062615.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859035
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
999 C 5 |a 10.1088/0034-4885/73/12/126601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/16/10/R02
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.0603873103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.108302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.038303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2003-00520-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/16/38/032
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.138301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3sm27720h
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep35814
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7LC00432J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c002057e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Hajdú
|y 2008
|2 Crossref
|t Colloids for Nano- and Biotechnology
|o A. Hajdú Colloids for Nano- and Biotechnology 2008
999 C 5 |a 10.1039/c0sm01307b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1590/S0103-97332005000400018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.92.042311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4927665
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1515/JNETDY.2007.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0304-8853(99)00087-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Mezulis
|y 2012
|2 Crossref
|o A. Mezulis 2012
999 C 5 |a 10.1103/PhysRevE.89.032308
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.108303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3sm52779d
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.colsurfa.2012.02.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.198101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la047056h
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/0141861031000107962
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/i2016-16129-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la904588s
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la062184m
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/i2007-10264-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.67.011404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.208302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.fl.21.010189.000425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/S0022112084002330
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.70.061201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la9001913
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la700489e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/e2006-00012-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp3032644
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.langmuir.7b02313
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/bm2000023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp076913y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1771631
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1515/jnet-2016-0024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jpcb.8b01152
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/2016GL071151
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/i2013-13042-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1590/S0103-97332002000300008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c2sm26680f
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.118301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/j100342a073
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7CP05843H
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5042051
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la703517u
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21