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The problem of constructing Monte-Carlo solutions of drift-diffusion systems corresponding to
Fokker-Planck equations with sources and sinks is revisited. Firstly, a compact formalism is
introduced for the specific problem of stationary solutions. This leads to identification of the
dwell time as the key quantity to characterize the system and to obtain a proper normalization
for statistical analysis of numerical results. Secondly, the question of appropriate track length
estimators for drift-diffusion systems is discussed for a 1D model system. It is found that a simple
track length estimator can be given only for pure drift motion without diffusion. The stochastic
nature of the diffusive part cannot be appropriately described by the path length of simulation
particles. Further analysis of the usual situation with inhomogeneous drift and diffusion coefficients
leads to an error estimate based on particle trajectories. The result for limits in grid cell size and
time step used for the construction of Monte-Carlo trajectories resembles the Courant-Friedrichs-

Lewy and von Neumann conditions for explicit methods.

Keywords: Monte-Carlo method; Fokker-Planck equation; drift-diffusion transport; track length estimator

I. INTRODUCTION

The Monte-Carlo approach is a well-known and
widely used method for the numerical solution of time-
dependent and stationary problems [1-5]. Its particu-
lar strength is in the flexible incoporation of complex
multi-dimensional geometries, its straightforward imple-
mentation in computer codes and its algorithmic robust-
ness. Although sometimes guided by intuition, most ap-
plications are based on rigorous mathematical relations
between systems of partial differential equations, cor-
responding Green’s functions and stochastic processes.
Many examples of such applications are based on Fokker-
Planck models for drift-diffusion dynamics and its equiv-
alent in the theory of stochastic differential equations.
To mention only a few: codes in plasma physics research
for studies on kinetic impurity transport [6-9] , for neu-
tral particle transport [10-12] and for plasma fluid trans-
port [13] are based on certain variants of Fokker-Planck
models including sources and sinks. Usually these codes
are optimized for the treatment of stationary systems
and all together they suffer from statistical noise due to
limited CPU time which limits the number of stastisti-
cal samples. The search for a solution to this problem,
i. e. increasing the algorithmic efficiency and reducing
the noise, has a long history and led to the design of
so-called estimators [14] which allow to gain more infor-
mation out of the computational effort than simpler and
perhaps more intuitive methods. One example of such a
device is the track length estimator, which does not only
accounts for certain locations of simulation particles, but
rather considers the finite path length of simulation par-
ticles to evaluate the particle distributions in the compu-
tational volume and thereby reduces the statistical noise
in the numerical solution. Although well established for
many years in simulations of neutrons and neutral par-

ticle transport it is surprising that its implementation
in diffusion problems is not that well discussed nor doc-
umented. Questions in this context concern a proper
normalization of numerical solutions, error estimates and
a rigorous mathematical derivation of sometimes intu-
itively obvious methods. In this paper we want to con-
tribute to the discussion of implementing a track length
estimator in drift-diffusion problems closely related to
the research fields mentioned above. To introduce nota-
tion and mathematical framework the problem at hand
is sketched briefly in section II. The formalism leads im-
mediately to the dwell time of the physical system as
the key quantity for constructing a time stepping algo-
rithm. In section III the general framework is applied to
the Fokker-Planck equation. Well known facts on its cor-
responding stochastic differential equations and Green’s
functions are used to discuss the particular Monte-Carlo
approach for its solution. Without loss of generality, ba-
sic results are derived for the particular case of a homo-
geneous 1D problem. Based on this, in section IV the
concept of the track length as a mean to estimate the
dwell time is discussed. The sobering result is that a
straightforward use of a track length estimator is possi-
ble for the pure drift motion only. After a few general
comments on simulations of diffusive motion, the anal-
ysis of the more important inhomogeneous 1D case in
section V shows that requirements on accuracy of the
stochastic approach leads essentially to restrictions of
time step and spatial resolution recovering the Courant-
Friedrichs-Lewy and von Neumann conditions for explicit
finite difference methods. In the concluding section VI a
short summary of the findings is given.



Il. CONSTRUCTION OF MONTE-CARLO PATHS, DWELL
TIME AND NORMALIZATION

In the context of particle transport, collision processes
and fluid flow the Monte-Carlo approach can be consid-
ered roughly as a sampling of random paths of simulation
particles according to certain rules determining the dis-
crete steps in a computational volume. The distribution
of these particles resulting from a given particle ensem-
ble at the beginning of the simulation then represents
the solution for a particular quantity of interest. A ran-
dom path in configuration space can be described by a
probability density P (xm|Xo;tm) representing a path
of a single particle starting at location xg and moving
to location x,, via m steps passing the intermediate lo-
cations x1, Xo,...,X;,—1. Lhe time corresponding to the
step from x;_1 to x; is denoted by A;, the total time
needed for the entire path is denoted by t,=> ., A,.
Each step is a random event guided by some transition
probability density p*(x;|x;—1;4A;). The notation p™ la-
bels a step where the particle really arrives at x;, whereas
the opposite event, where the particle disappears during
the step, is taken into account by a transition proba-
bility p~ (x;|x;—1;A;). This takes into account processes
like ionization, radioactive decay or absorption processes.
The sum of those describes the certain event that the par-
ticle does a step. This is written as

p(xi|xi—1; ) = pT (x4 |xi—13A) + p~ (xi|xi—1;Ay) (1)

and

/p(xi|Xz‘—1;Ai) dx; =1 (2)

Q

and means that a particle existing at x;_; will definitely
do a step during a time increment A; towards some loca-
tion in the volume €2, but perhaps it will get lost. There-
fore, the probability of a particle still existing after m
steps can be described by

m

)= r" (xilxio1;40) (3)
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PF(xm|%05tm

The representation by a product of probabilities requires
the Markov assumption, i. e. each step is independent of
the previous steps. Therefore, the event that a particle
does m — 1 steps and gets lost at the mth step is

P% (Xm|X0; tm) =p (Xm|xm—1§ Am) X
(4)
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Next the path probabilities are connected to ensembles
of particles by assuming that the probability of finding a
particle at xg at time ¢y can be described by a probability
distribution function f¥(xg,%o) obeying

/er(Xo,to) dxo =1 (5)
)

The particle density n of the ensemble at time ty is ob-
tained by multiplication with the total number N of par-
ticles in the volume ()

= N f*(xo,t0) (6)

Thus, the distribution function

S, tm)
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gives the distribution of particles n(xy,,tm)
N fT(Xm,tm) in the volume after m time steps. The
resulting integral equation

S, tm)
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identifies the transition probabilities as propagators for
the distribution function during the random path. To
simplify notation and for subsequent discussions a gen-
eral propagator for the Monte-Carlo chain is introduced
by

G* (xXmlxjitm)
9
:/.../PTJg(Xm|Xj;tm7tj)dxm,1...de+1 ( )
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This definition allows to write

/ G+ (x5t — 1) (35, 1) dx; (10)
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Similarly a propagator for the termination of the path is
defined by

G (%m|xj3tm)
(11)
/ / (X |Xj; tm — t5) dXm—1. . .dXj41
Q Q

and a corresponding distribution function f—

/ G (ol = 1) £ (x5, 15) ;. (12
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which represents the loss probability distribution for par-
ticles at the mth step. Due to the normalization con-
dition of Eq. 2 a recursive relation for the distribution
functions f+ and f~ at different times can be found

/fxt dxf/f mldxf/fxt



(13)

and it follows

m
/f+(x,tm)dx+2/f_(x,ti)dx:1 (14)
Q =19

which simply expresses the fact that a particle is still
present in the volume 2 after m steps or was lost at
an intermediate step. The distribution function f~(x,t)
can be used to derive certain statistical averages along
the chain. For example, the average dwell time 7, of
particles along chains with m steps, is given by

%

i ti f7(x,t;)dx iZAk fm(x,t;)dx
%/ /

1=1 k=1
fi( 7ti)d fi( ati)d
;! %, £;) dx ;Q/ x, ;) dx
(15)

In appendix A the average dwell time 7 for a system with

finite Monte-Carlo chains is derived in the continuous
limit. It is shown that the dwell time is given by the
cumulative distribution function F'*(x)

T:/ff*(x,t)dtde/F*(x)dx (16)
Q0 Q

For completeness and to point out the relation to nu-
merical procedures we show also the evaluation of Eq. 15
using discrete sums. However, in contrast to the contin-
uous case, for this purpose it is necessary to require that
all time steps are equal, i. e. Ay = A and t; = kA for
1 <k < m. Then one can use Eq. 14 and the relations

ii/f—(x,tmx
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Assuming now an upper limit M for the number of
Monte-Carlo steps, i. e. fT(x,¢m,) = 0 for m > M, one
finds

M
™ = A/Zf+(x,ti)dx = A/Fi}(x,tM)dx (19)
' Q

Q =0

Note, that the cumulative distribution function
Fi(x,ty) for the discrete case does not have the
dimensions as its equivalent F*(x) in the continuous
case, which is an integral over time. Actually, the
Eq. 19 is the basic result to provide a link between the
physical system and numerical models. To see this, the
cumulative particle number

M
Ny = Z/n(x,ti)dx =N /Fj}(x,tM) dx (20)
i=1¢) 3
is considered, which represents the number of particles in
the stationary system, where all path lengths are present
simultaneously. On the other hand, this reflects the out-
come of standard numerical approaches where a num-
ber of N*(to) particles is launched at time ¢p and their
particular trajectories are tracked via markers at their
respective positions at each time step A until they are
lost, i. e. reached a maximum number of steps. The term
markers just denotes the actual position of a particle and
its tracking is usually done by increasing a counter by
one for each grid cell in the discretized computational
domain. Consequently, this means that the sum of all
the markers for all particles N3, = vail N*(t;) in the
simulation (labeled by the asterisk) is an estimate for the
particle number Nj; in the stationary situation. Now it
is to be noted that the dwell time 7,4 is an intrinsic char-
acteristic of the physical system under consideration and
it is linked to the ratio of stationary particle number Ny,
and source feeding via N particles per time A. This leads
to another form of the basic result of Eq. 19:
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Indeed, the Eq. 21 provides the necessary normaliza-
tion condition for the analysis of Monte-Carlo chains
of stationary systems: the number of physical parti-
cles Nj; can be obtained by the simple normalization
Ny /N = N3 /N*, where N is given by the known phys-
ical source strength, N* is the number of simulation par-
ticles and N7, is the outcome of the numerical construc-
tion and superposition of Monte-Carlo paths. This ap-
proach is straightforward and gives accurate results as
long as the chosen particle number and step size is suf-
ficient to obtain good statistical estimates. This is quite
often not easy to ensure. For this reason in the next
section the marker method, where the dwell time is com-
puted directly, will be compared with the track length
method, which has been proven to be more efficient in
some applications [10; 14]. But, here we will focus on its
possible application for drift-diffusion systems described
by Fokker-Planck models.

(21)



I1l. FOKKER-PLANCK EQUATION AND GREEN’S
FUNCTIONS

The multi-dimensional Fokker-Planck equation with
sources and sinks can be written as

of
ot
It describes the temporal evolution of a scalar function
f transported by a convection with drift velocity V and
conduction guided by a diffusion tensor D. Sources are
summarized by S; and sinks by S_, respectively. The
Fokker-Planck equation naturally appears in the context
of passive scalar transport like Brownian motion and,
even though it is a linear equation, it plays an important
role in linearized methods for non-linear fluid dynamics
and similar problems. Here we consider Eq. 22 as an
evolution equation for the particle distribution function
fT discussed in the previous section, but this does not
affect any other interpretation. A very appealing feature
of the Fokker-Planck equation is that for constant V and
D its Green’s function is known and that the importance
of Fokker-Planck models for stochastic processes has been
studied intensively. We refer to these fundamentals just
by recalling two basic facts: (1) The Green’s function for
Eq. 22 without sources and sinks and constant V and D
is given by

-V Vf—%V-(Df) +S54 —5- (22)

DY (x=Vi)-D'- (x— Vi)
G(x,t) = 557 %P o
(23)
and G(x,t) fulfills the integral relation
f(x+ Ax,t+ At) = /G(Ax, At) f(x,t) dx (24)

Q

(2) The basic recipe for constructing a Monte-Carlo chain
to obtain a discrete representation of a solution of Eq. 22
reads

Ax =V At +B-¢£VAL (25)

where £ is a vector whose components are three indepen-
dent Gaussian random numbers with mean 0 and vari-
ance 1. The tensor B fulfills D = B-BT. The basic corre-
spondence between these two aspects is that the Green’s
function can be regarded as the probability distribution
of the step Ax and the construction rule of Eq. 25 pro-
vides exactly this Gaussian distribution. For details on
this a vast amount of literature exists, see e. g. [15; 16]
and references therein.

As for us, we continue with the discussion of the dwell
time 7, introduced in the previous section as the basic
quantity for the evaluation of Monte-Carlo chains. For
this purpose and to keep the math as simple as possible
we restrict ourselves on a prototypical 1D problem

af o 19

o = 5 V4555 (D —af+8 -5 (20)

Here, V and D are constant drift and diffusion coeffi-
cients, Sy and S_ are unspecified source and sink terms
and « is a decay rate introducing an additional loss pro-
cess, e. g. ionization processes, radioactive decay or ab-
sorption processes. It is a strength of the Monte-Carlo
method, that usually the source and sink terms S; and
S_ can be treated by starting and terminating Monte-
Carlo chains at particular locations. Therefore, we ex-
clude the sources and sinks contained in Sy and S_ in
the temporal evolution of f. The remaining transport
piece and decay process can be computed via

fat+8) = [ o= u.8) flw.0)dy (27)
where

eah z—y—VA)?
Glx—y,A) = \/ﬁ exp [—% (28)

is the relevant Green’s function of Eq. 26 with properties

—+oo +oo

/G(ac—y,A)dac: /G(Jc—y,A)dy:e*O‘A (29)
and

/G(ac—y,Ag)G(y—z,Al)dy:G(ac—z,Al—i—Ag) (30)

Comparison of Eq. 27 with Eq. 8 shows that the Green’s
function G(x — y,A) can be regarded as the transi-
tion probability density pT(z|y; A) guiding the Monte-
Carlo steps. Similarly the loss probability is given by
p(zy; A) = (1—e~*A) G(x —y, A). Note, that for pure
drift motion the Green’s function becomes

pr(ly; A) =Gz —y,A) =6(z —y -V A)e *> (31

with 6(x —y —V A) being the Dirac delta function. Now
we are in the position to evaluate certain integrals of
section II. One finds

/ [z ty,)de = e (32)
and
/ (@, tm) do = (e *5m — 1) e~ (33)
The dwell time 7, for the 1D problem reads
Z Apg / f(z,t;) dx
i=1k=1  _
Tm = = (34)
Z / f(x,t;) dx
1—1700



and in the continuous limit with measure u(t) = 1 — et
(see appendix A) this provides the compact result

tm
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Now we come to the question of average track length A,,.
As mentioned above, the reason to use this quantity in
estimating a particle distribution is — as for any other
choice of estimator [14] — to get more information from
the time stepping and to use a larger time step. We
start with the general discrete expression similar to the
definition of 7, in Eq. 15

A = —2 (36)

m

> [ xtdx

i=lq

%

Xk — Xp—1] [~ (Xp, ts) dxp,
1

For the prototypical 1D problem considered here one
finds by the use of Eqgs. 27-30 that

/ |zr — xp—1| f~ (zk, ;) day
) (37)
= L(Ay) /f_(x,ti)dx for 1<k <i

where L(A) is the average length of a jump for a drift-
diffusive time step A

_ ] (x—VA)?
L(A) —7 J5-DA exp {—W] dx

(38)

[2DA V2A A
=\, exp < 5D ) + VAerf (V E)

Thus, the average track length A, in the 1D case is given
as

S pan [
i=1 k=1 B
Z/ff(x,tz)dac

Note that L(Ay) — |V|Ag for D — 0 and then A\, =
|V'| T, and this limit forms the basis for the use of track
length in many applications with pure drift motion: with-
out any diffusion the average track length is synonymous

with the dwell time and this fact gives reason to sam-
ple path increments instead of counting markers during
the construction of Monte-Carlo path. Of course an in-
crease of the numerical efficiency has to be checked for the
specific problem at hand. Sometimes the simple marker
method might be more efficient, even if smaller time steps
are necessary. However, for finite diffusion coefficient
D > 0 the extension of the track length method encoun-
ters certain problems which will be discussed in more
detail in the next section.

IV. DWELL TIME VS TRACK LENGTH

In section II the dwell time has been shown to be the
basic quantity for normalizing and evaluating numerical
Monte-Carlo chains for stationary distributions. This led
to the normalization condition Eq. 21. For a 1D drift-
diffusion system expressions have been derived for the
dwell time 7,, (Eq. 34) and the average path length A,
(Eq. 39). The question initiating the present analysis
was: by which means the track length \,, might be use-
ful in replacing the time consuming computation of the
dwell time 7, by markers. The marker method gives the
right results, but it relies on the assumption that the sim-
ulation jump is entirely contained in the grid cell where
the counter is increased by one. If cell faces are crossed
this is not the case and some error might occur in the
weighting of the particles. On the other hand the effi-
ciency of the algorithm might be increased by analyzing
the details of the path between two successive locations,
e. g. by a proper splitting of the track length and dis-
tributing appropriate weights. At first glance and based
on the results of section IIT the answer might look sim-
ple: due to the fact that L(4;) is known analytically and
that it depends only on the time step A; (the case, where
L(A;) also varies spatially, will be part of the discussion
in the next section) the comparison of Egs. 15 and 34
with Eqgs. 36 and 39 leads to the idea that it might be
enough to sample the scaled path

|z; — xi—1]

* =TIy

A; (40)

because Eqgs. 34 and 37 give for the chain average of ®;
immediately

LN lzp — 21| _
—— A x,t;) dx
z/ z A ()

o0
m

Z / f(x,t;) dx

i=1

As noted before, for pure drift motion the average step
length is just L(Ay) = |V|Ag. Therefore, the nu-
merical procedure of sampling ®; consists of sampling
|z; — x;—1]/|V] for all particles and all paths, i. e. the
time needed to move along straight line segments with



velocity |V|. Then it is clear that the resulting cumula-
tive distribution represents the dwell time. For a diffusive
step it is not that obvious due to the random character of
the step expressed by the construction of Eq. 25, which
reads in the 1D case

Az =VAt+ VDALY (42)

Here, v is a Gaussian random number with zero mean
and variance 1. Indeed, the special nature of the Fokker-
Planck model does not allow to introduce an effective
velocity L(A)/A to be used to scale the step length
|z; — 2;—1]. The problem is illustrated by Fig. 1 for a
particle passing two cell faces. The advantage of a track
length estimator would lie in the possibility to evaluate
pieces of a single particle step when particles jump over
more than one grid cell in the computational domain.
The grid cells are just serving for counting markers dur-
ing Monte-Carlo time stepping and to obtain a discrete
representation of the solution of interest. Actually, the
idea is to distribute dwell times to different grid cells ac-
cording to a proper splitting of the distance between to
subsequent locations, i.e. A = A;+As. This would allow
large time steps, because the single step is retroactively
splitted into several steps. Therefore, having computed

P
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FIG. 1 Sketch of a particle step during time step A from
location z to location z. The cell boundary at y = X;_;,2
is passed within a single step. An appropriate estimator &
would cover the entire step. The evaluation of the Monte-
Carlo trajectories needs the determination of the components
®; and P, for proper sampling.

a step ¢ — z for a given time step A which passese. g. a
single grid cell boundary at point y, a unique splitting of
the estimator ® would be needed to evaluate

|z — ly — | |z —y
) LAY 1+ L) 2 1+ Do (43)

However, considering just the symmetric case |z —y|=|y—
x|, where one requires A=Ay and L(A)=L(A1)+L(A2),
illustrates that Eq. 43 can not be fulfilled in the general
drift-diffusive case. For the pure drift motion with D=0
this is always possible, but unfortunately one finds by
inspection of Eq. 38 that for finite diffusion coefficient D

L(Ay) + L(Az2) > L(Ar + Ag) (44)

for any finite A; and As. Moreover, when considering
the sum of average path lengths for m steps each corre-
sponding to a time increment A one finds that

o " [2DkA V2EA
ZL(kA):Z XD ( 5D >

k=1 k=1

- kA
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is a monotonically increasing function of the number of
steps m if the total time mA is kept constant. The to-
tal length diverges for m — co. Then Y ,-, L(kA) — oo
and this shows that the length L(A) is not a useful quan-
tity to describe the path of a diffusing particle during a
prescribed time interval A. The explanation for these pe-
culiarities is that the line segment between two points in
stochastic diffusive steps does not tell us anything about
intermediate locations of a particle. It could have been
anywhere with a finite probability. In other words, sam-
pling the path length or the estimator ® does not allow
to obtain the dwell time as it was possible by marker
counting via Eq. 21. Therefore, a proper normalization
is not provided. More details on the statistics of the esti-
mator ® compared to the jump length |Az| can be found
in appendix C. The only exception and possible applica-
tion of the track length estimator ® is in the pure drift
which is deterministic and allows retroactive analysis of
the straight line segment connecting two subsequent lo-
cations. But even this is not ensured if V' is not constant
everywhere and certain errors occur if the time step is
chosen too large. This will be discussed in more detail in
the next section.

V. THE 1D INHOMOGENEOUS CASE

The discussion of section IV has shown that the de-
tails of the jump length in the drift-diffusive Monte-Carlo
step do not give any advantage in the evaluation of the
particles’ trajectories. The clean representation of the
dwell time is of central importance for the Monte-Carlo
sampling, but can not be extracted from segments of
the particle trajectories if diffusion is present. Rather,
the trajectories represent only probabilities. An obvi-
ous problem related to the discussion of diffusion paths
in section IV is: to what extent is the dwell time cor-
rectly taken into account by increasing the counter in
the marker method by one, i. e. by using always the same
weight even if diffusive detours are possible? This is of
particular importance if a simulation particle starts close
to a cell boundary and has a significant chance to get
back to the starting cell after some detours in neighbor-
ing cells. This is illustrated in Fig. 2 where the dwell time
T;(x0) for a single time step A is shown as a function of
the particle’s starting position xg. The dwell time T;(z¢)



for each particular grid cell is introduced by
Xit1/2 A
/G(:I: — Zo,t) dtdx (46)

Xi—1/2 0

Ti(xo) =

with X;_;/5 and X/, denoting the location of the ith
cell boundaries. A dwell time T;(x¢) &~ A means that the
possible jumps of a particle started at a particular zg are
most likely inside the ith cell. A lower value means that
the probability for detours into other cells is significant.
It can be seen that particles starting in a particular cell
in general have a finite dwell time in certain regions of
the neighboring cells. This has to be taken into account
when a particle step is to be weighted properly. Actu-

Ti 1 T; Tita
A
| ( X
Xi_a/2 Xi_1/2 Xit1/2 Xiya/2

Zo

FIG. 2 Sketch of the dwell time T} for different cells as a
function of the particle’s starting position xo. The time step
is A and the dwell time can reach this value inside the cells
if most possible steps are essentially inside a particular cell.
But when the particle starts closer to the cell boundaries its
dwell time in the neighboring cell is non-zero due to possi-
ble stochastic detours. The plots were obtained numerically
by using the parameters V=2 m/s, D=1 m?/s, Xi_3/2=-1,
Xi—l/2:27 Xi+l/2:57 Xi+3/2:87 a=0 and time Step A=0.1
S.

ally, it is needed to consider the dwell time for each cell
separately to gain information for the proper weighting
of the Monte-Carlo sampling. On the other hand this
means that the full Green’s function integral Eq. 46 is
evaluated and, indeed, this is what the Monte-Carlo al-
gorithm is supposed to do. The situation becomes even
worse when the inhomogeneous case with spatially vary-
ing velocity V(z) and diffusion D(z) is considered. Then
the Green’s function is not even known and the Monte-
Carlo stepping is justified only for regions with constant
V and D, as usual in discretized computational volumes.
But, this leads directly to the requirement that the over-
lap in dwell times T; over cell boundaries as sketched in
Fig. 2 should be as small as possible as it introduces nu-
merical errors. To quantify the error one might estimate
the width b of the overlap in Fig. 2 where the dwell time
T; drops from A to 0. With the definition

o,

| = A (47)

|

and |0T;/0xo| taken at a cell boundary, a measure for
the error E can be introduced by E = b/A,, where A, =
X; — X;_1 is the grid spacing of the computational grid.
The requirement b/A, < 1 gives the condition

-1

aT;
<1 (48)

A
E =
8:00

S A

%

taking |0T;/0xo|; as the minimum of |0T;/0x| at posi-
tions X;_1/2 and X; /2. The detailed expressions for
those derivatives are given in appendix B.
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FIG. 3 Sketch of the error estimates F, Ev—o and Ep—o de-
fined in Egs. 48, 49 and 50. The general error estimate E com-
bines the limiting cases Ev—o and Ep—o and is more restric-
tive for the choice of a time step A. The plots were obtained
numerically by using the parameters V=2 m/s, D=1 m?/s,
A.=4 m and a=0. Note that the curves of Ep—g and Eyv—g
always have two intersection points: one at A=0 and the other
at A=7D/(2|V|?) and that for any finite values of V and D
it follows that Ep—o > Ev—o for 0 < A < 7D/(2|V|?).

It is important to note that for a = 0 the following limits
of Eq. 48 can be found: For V # 0 and D — 0

A
Ep—o = 1|V| ~ <l (49)

and for V—-0and D >0

D A
Ey_o= A A, <1 (50)
which are well known from stability analysis of finite dif-
ference schemes [17]. But here the conditions result from
requirements on accuracy for the otherwise numerically
stable Monte-Carlo procedure. The term stable in this
context is used in the sense that no instabilities occur
in the straightforward sampling along particle trajecto-
ries. Of course the application for linearized models of
non-linear systems might suffer from the usual numerical
difficulties with respect to unstable modes. In practice
the error defined by the Eqs. 48-50 represents additional
noise in the simulation results due to an improper weight-
ing in the marker method when each particle increases
the counter by one even if its cell specific weight might
be much less than 1 at a location close to a cell boundary.



This means that the instability which might appear as a
problem in other numerical methods due to large time
steps becomes a problem with a lower limit of noise in
the Monte-Carlo procedure. This minimum level of noise
increases with time step. The Fig. 3 illustrates the con-
dition of Eq. 48 in comparison with the limiting cases of
Egs. 49 and 50. To extend the discussion of time step-
ping the estimates for numerical errors introduced by the
dwell time T; in Eq. 46 for each cell are applied for the
case of varying drift and diffusion coefficients V() and
D(zx). To derive a general expression of the Green’s func-
tion even for the case of piecewise constant coefficients
is a complicated task (see e. g. [18-20]). Therefore, we
give a more crude estimate of this problem by employ-
ing again the approximative expression of Eq. 46. First
we note that insertion of the limiting cases expressed by
Eqgs. 49 and 50 into Eq. 38 gives immediately L(A) < A,
for D — 0 and L(A) <« 2A, /7 for V' — 0. Therefore,
the time step constraint derived from the requirement
of reduced Monte-Carlo noise can be reformulated as a
constraint for the average jump length L(A) defined in
Eq. 38. The result L(A) < A, is true also for the gen-
eral numerical error of Eq. 48. Stressing even further the
argument of small overlap width b as defined by Eq. 47
one might consider an error due to different values of V/
and D in neighboring cells by the scaled difference

_ 251 — b
br + bt

*

(51)

where by and by; are the width of the overlapping region
for a single interface where V' = V7 and D = Dy on the
one side of the interface and V' = Vj; and D = Dy on
the other. Using the formulas of Eqs. B5 and B6 given in
the appendix B for a single interface (formally: A, — 0)
one obtains

Vi|A V| A

br = bir = (52)

erf 7|VI|A 7 erf 7|VH|A

V2D1A V2D A
To simplify matters even more the error E* is approxi-
mated by

ViA

0b/0x b (53)

E* =~ A,

b ’ erf( [V|A > ’
V2DA

where A, denotes again the (finite) cell width, to obtain

B =1 (E 2LD) DA P ( 2D ) (54)

with gradient lengths of V' and D defined by

V D

v=5v/az * "= opjos

(55)

For A — 0 one finds E*=A,/(2Lp) and for A — oo
the limit is E*=A,/Ly. For arbitrary time steps A the

values of E* are between these two limits. Not surpris-
ingly, the requirement E* < 1 leads to the the constraint
A, < Ly,Lp, meaning that the computational grid
must be capable of resolving the spatial variations in the
coefficients V and D properly. Altogether, the require-
ments on accuracy and noise reduction in Fokker-Planck
Monte-Carlo simulations, i. e. F < 1 and E* < 1, give
constraints for the time step A and the grid resolution
A, in the marker method which are identical to explicit
finite difference methods.

VI. CONCLUSION

The problem of Monte-Carlo time stepping algorithms
for Fokker-Planck equations has been reconsidered. The
basic objective in finding numerical solutions of station-
ary problems is the numerical estimation of the dwell
time. This can be obtained by the standard procedure of
launching an ensemble of simulation particles and track-
ing their entire paths by counting markers in a discretized
grid. The ratio of the cumulative number of particles and
the number of launched particles per time step provides
the dwell time and a proper normalization to connect the
simulation results with the physical system under consid-
eration. The path length sampling has been considered as
a possible alternative for the time consuming counting of
markers. This is obviously a simple and efficient method
for free flight problems, like for neutral particles or neu-
trons in many applications, where the motion is domi-
nated by drift and therefore is deterministic. However, it
is shown that the stochastic nature of the diffusive piece
in the transport excludes the use of simple track length
sampling because the path length of diffusion trajecto-
ries is not a well defined quantity and not appropriate
to represent the dwell time. As long as no other track
length based estimator is found - and in this work no
proposal is given - the stepping algorithm is restricted
to the usual marker method. An additional analysis of
the inhomogeneous 1D problem allowed to derive further
restrictions on the construction of Monte-Carlo trajecto-
ries which shows that the well known Courant-Friedrichs-
Lewy condition for explicit finite difference schemes has
to be taken into account also for the marker based Monte-
Carlo schemes.
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APPENDIX A: Dwell time and other averages in the
continuous limit

The dwell 7, has been defined in section II by the
discrete expression Eq. 15

i/tif(x,ti)dx

i=1g

i jzl/f_(x’ti)dx

Tm

Assuming that all requirements of measure theory and
Lebesgue integration are met one can introduce a prob-
ability measure p

uitn) = Y- [5Gt ix
i=lq

t (A2)
= 1— [ ff(x,tm)dx= [ W/(t)dt
[rretmes=
with density '
Of T (x
i = - [0 o (A3

Q

Then the dwell time 7,,, in the continuous limit is written
as

tm
i ()
Tm= |t dt A4
/ 1(tm) (A4)
0
This can be evaluated via
tm tim 9
/tu’(t)dt:f//t [fixt) dtd
0 Q0
(A5)
tm
:—tm/f*(x,tm)der//er(x,t)dtdx
Q Q0
to obtain
Tmem/er(X,tm)dX
Q
. (A6)
://fJ“(x,t)dtdxftm/f+(x,tm)dx
Q0 Q

The stationarity of the problem considered here requires
that fT(x,t,) = 0 for t,, > tj, with a finite time ¢,

giving the upper limit for a Monte-Carlo chain. Then
one finds for 7 = lim¢,, —s00 T,

T=/7f+(x,t)dtdxz/F+(x)dx

Q0 Q

(A7)

In a similar way one can derive the chain average w,, of
a quantity w = w(t)

Wy, = — (A8)
S F(xt)dx
i=lg
with the continuous limit
7 ow .,
w= En fr(x,t)dtdx (A9)
Q0

APPENDIX B: Evaluation of derivatives in the time stepping
error

The definition of Eq. 46 for the dwell time T; in the
ith cell

Xit1/2 A
T, = /G(z—zo,t) dt dx (B1)
Xi—12 0

gives

A A
oT;
p) = G(Xi,1/2 —.Z'O,t) dt — G(Xi+1/2 —.’I]O,t) dt

Zo
0 0

(B2)

This can be evaluated using the relation

/AG(ac,t) dt

where

v = v/2aD + v?



Deﬁning Az = Xi+1/2 7Xi—1/2 one finds for o = Xi—1/2

oT;
6900

1 f< v'A )
=—er
Xi—1/2 v’ V2DA

1 vA, B v' A, L+ orf VA — A,
57 Pl D er ~ DA

n 1 vAz+v’Am 1 — erf VA 4+ A,
20 “P\D "D “*\"VapA
(B5)

and at wo = X; /o the derivative is

oT;
6900

1 o f< v'A )
=——er
Xis1)o v V2DA

+L _vAz_v’Am I VA — A,
5y SXP 5 D er DA

1 VA, n v A, 1 ¢ VA + A,
5y OXP 5 5 er DA
(B6)

APPENDIX C: Statistics of the estimator ®

To be more precise and pay sufficient attention to the
random character also present in the evolution of the esti-
mator ®; we will consider more in detail the properties of
the scaled path length. According to Eq. 42 the Monte-
Carlo step for the estimator ® for time step A is

|Ax] Voo VDA
R 77N Rl V77N Rt 77N (1)

Due to the normal distribution of Az with mean (Az) =
VA and variance ((Az)?) — (Az)? = DA the absolute
value |Az| obeys a folded normal distribution with mean
and variance

(|Az]) = L(A) (C2)

([Azf?) = (|Az])* = (VA)® + DA — L(A)? (C3)

Consequently the distribution of ® is also folded normal
Its mean (@) is independent of V and D and as expected

() =A (C4)
and its variance is

V2A4 DA?
(®%) — (®)? = + —A? (C5)
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It is interesting to compare the limiting case V = 0 and
finite D and vice versa. For V # 0 and D = 0:

(lazl) = v|A (co)
(1Azf?) — {|Aal)? = 0 ()
(@) — (®)* =0 (C8)
and for V=0 and D # 0:

(1A = /222 (©9)
(180f?) - (180])? = (5 -1) 222 (c10)
(@%) - (@)? = (5 —1) A2 (c1)

One finds that for pure diffusive motion the variance of
® becomes independent of D and also the dynamics be-
comes super-diffusive. This is the most important differ-
ence compared to the statistics of |A|. There the variance
for pure diffusion is proportional to the time step A as it
is also for Az. But ® goes with A? in that case.
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